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Abstract

We are studying the harmonic and twistor equation on Lorentzian surfaces, that is a two-dimen-
sional orientable manifold with a metric of signatufe 1). We will investigate the properties of
the solutions of these equations and try to relate the conformal invariant dimension of the space of
harmonic and twistor spinors to the natural conformal invariants given by the Lorentzian metric. We
will introduce the notion of semi-conformally flat surfaces and establish a complete classification
of the possible dimensions for this family.
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1. Introduction

On every spin manifold we can canonically construct two first-order differential op-
erators, the so-called Dirac and twistor operator. It is known that the dimension of their
resp. kernels—the space of harmonic resp. twistor spinors—is a conformal invariant, that is
invariant under multiplication of the metric used to define these operators with a smooth and
strictly positive function. A natural question that arises is to know how these dimensions can
be expressed in terms of conformal invariants given by the (pseudo-)Riemannian metric.
This question is particularly interesting in the case of Riemannian and Lorentzian surfaces
since they carry a natural conformal structure induced by the isothermal charts.

On Riemannian surfaces, harmonic spinors were studid@,#). The dimension of
the space of harmonic spinors depends essentially—unlike the dimension of the space of
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harmonic forms—on the conformal class of the metric and the spin structure used to define
the Dirac operator. Furthermore, the dimension is bounded. The purpose of this paper is
to study the dimension of the space of harmonic resp. twistor spinors in the case of an
indefinite, that is a Lorentzian metric, and to relate them to lightlike vector fields and
lightlike geodesics. We will show that:

e harmonic and twistor spinors can be described in the same way;

e harmonic and twistor spinors are linked to the global behaviour of the lightlike geodesics
and the given spin structure;

e nowhere vanishing harmonic resp. twistor spinors cause conformal flatness.

Though the Lorentzian theory of surfaces looks similar to its Riemannian analogue, vari-
ous new phenomena occur. For instance, we have uncountably many conformal classes of
simply connected Lorentzian surfaces (§8@]). On the other hand, the torus is the only
compact surface allowed to carry a Lorentzian metric since the Euler number has to vanish.
However, a Lorentzian torus—unlike its Riemannian counterpart—need not be conformally
flat as we have no regularity properties for solutions of hyperbolic partial differential equa-
tions. Further difficulties are caused by the non-compactness of the isometry group and the
indefiniteness of the scalar product on the spinor bundle. In order to by-pass these problems,
different approaches are carried out: For Lorentzian tori provided with a left-invariant met-
ric, we can explicitly compute the kernels by tools developefd jnNon-conformally flat
examples of Lorentzian tori are given$ection 4.2.2where we consider a particular class

of metrics for which the resulting partial differential equations with respect to the trivial spin
structure can be explicitly solved. We will generalize these examples by the observation that
harmonic and twistor half-spinors might be interpreted as parallel spinors along one family
of lightlike geodesics. We shall introdusemi-conformally flags.c.f.) Lorentzian surfaces
which are a particular class of time-orientable, non-conformally flat Lorentzian surfaces
(seeDefinition 4.35 for which a classification of the possible dimensions in dependence
on the spin structure and the global properties of the lightlike geodesics is achieved. These
surfaces can by characterized by the existence of a divergence-free lightlike vector field (cf.
Proposition 4.38 Furthermore, we will rederive some geometric properties of Lorentzian
tori shown in[9].

We now want to state our main result. The lightcones in the tangent space induce two
one-dimensional lightlike distributions which accordingction 2nay be labelled unam-
biguously byX' and) provided the surface is orientable (which we always tacitly assume).
Furthermore, a lightlike vector field is a section either of #teor of the )-distribution.

It makes therefore sense to speak ofXnor )-flow if the corresponding vector fields

lie in the X- or Y-distribution, of X~ or Y-geodesics o~ or of )-conformal flatness (de-
pending on the divergence-free lightlike vector field toBer ), etc. By the classical
Poincaré—Bendixson theory for ordinary differential equations on a torus we know that
such lightlikeX- andY-integral curves or “lines” are either closed, asymptotic of a closed
curve or dense. These global properties of the lightlike integral curve give raise to the no-
tion of “resonant” and “non-resonant” cylinders and tori. On the other hand the existence
of harmonic spinors imposes some extra conditions on the holonomy of the principal spin
bundle: If there is a close#- and)/-line, then the lift of this line to the spin bundle has to be
closed as well. This is what we mean by™ resp. “V-triviality”. Let 81 = dim ker(D* :
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I'(S*) — I'(5%)) resp.t+ = dimkerP* : I'(S*) — I'(5F)) denote the dimensions
of the spaces of positive/negative harmonic resp. twistor half-spinors. Then we assert the
following to be true (cfTheorem 4.48

Theorem. Let(Mt1, g) be a compaci-conformally flat Lorentzian surface. Thép =
7_ and the only possible dimensions $qrare 0, 1and+-occ. These cases are characterized
as follows

() 8+ < 1ifand only if either

o there exists a dens&-line in which case we hav&,. = 0 for the non-trivial spin
structures or

e M*1is non-resonantor

e there exists nat-trivial resonant cylinder on/1+1,

Furthermore we haves, = 1 for the trivial spin structure
(i) 81 = 4oo if and only if there exists ai-trivial resonant cylinder om/1*1. In this
case, we havé, = +oo for every spin structure

The same conclusion holds fprand$_ instead ofY andé .., and an analogous assertion
can be stated for twistor spinars

The guestion to what extent this result carries over to general Lorentzian surfaces remains
to be settled.

2. Lorentzian surfaces

We will give a brief introduction to the theory of Lorentzian surfaces. For detail§16&e

A Lorentzian surfac& M1, g) is given by a smooth and orientable two-dimensional
manifold provided with an indefinite metric, thafiM*2 splits into the direct sum oftime-
like bundles and aspacelikébundlen. Furthermore, the lightcone defined gis built out of
two locally integrabldightlike (or isotropic) distributions. We call these distributioA%&and
Y according to the following convention: a vectoe TMt lies in X if and only if there
exists a further lightlike vectap such thatv, w) is an oriented basis and+ w is spacelike.
This convention is well-defined, and reversing the orientation interchaXigiith ). There-
fore, we can assign to any lightlike object thieresp )-type and speak ot- resp )-vector
fields, curves, geodesics, etc. We remark that lightlike vector fields need not exist globally.
In fact, their global existence is equivalent to the existence of a global orthonormal basis, so
that the orthonormal frame bundle ovet1 is isomorphic toM 1+ x SO, (1, 1) where
S04 (1, 1) denotes the identity component of the isometry groug, @). Equivalently,
we may assume the existence of a non-vanishing timelike vector field. Lorentzian surfaces
which admit such vector fields are said tdioee-orientablesince they induce an orientation
in a timelike subbundle. Simply connected Lorentzian surfaces are always time-orientable.
For further reference, we introduce the following notation: if we fix an othonormal basis
s = (s1, 82), let X; = 51+ 52 andY,; = —s1 + s2 which areX'resp.). By a suitable change
of the orthonormal basis, evefy resp.)-vector field can be written in this form.
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The local integrability of the lightlike distributions guarantees the existenmtbpic
resp.isothermalcoordinates(x, y), so we may locally writeg = A%dx dy resp.g =
12(—dx? + dy?) for a smoothx # 0. In particular, Lorentzian surfaces are locally confor-
mally flat. Recall that two metricg; andg> on a manifoldM are said to be conformally
equivalent if and only if there is a smoath> 0 such thag, = Ag1. In the case whergy is
flat, we say thag is conformally flat An atlas consisting of isotropic or isothermal charts
defines—as in the Riemannian case€emformal structureon the surface. These corre-
spond bijectively to conformal classes of Lorentzian metrics. It should be noted, however,
that the corresponding transition functions have no regularity properties. The two isotropic
distributions¥’and) are conformal invariants of the Lorentzian surfat€!t1, g). In fact,
they determine the conformal clagd.[The maximal integral curves of the and)-vector
fields which we callx- and)-lines ornull linesfor short, are further conformal invariants.
The X- andY-lines throughx will be denoted by, andm,. As we can locally straighten
out the null lines by choosing isotropic null coordinates, only the global properties of the
null lines encode conformal information. In the case of a simply connected surface, it can
be shown that there are no closed null lines, that two different null lines intersect in at most
one point and that every null line is properly embeddedifihL.

Since the existence of a Lorentzian metric on a compact surface is equivaténjo= 0
wherey denotes the Euler characteristic, every compact Lorentzian surface is diffeomorphic
to a torus. According to the Poincaré—Bendixson theory for ordinary differential equations
on the torus, a null line on a compact Lorentzian surface is either dense, a closed curve
homeomorphic tes which cannot be contracted to a point, or an asymptotic of a closed
null line of the same type.

In [9], the explicit behaviour of the null lines and further properties are discussed for
metrics of the form

8(x1.xn) = E(x1) dxf + 2F (x1) dxq1 dx2 — G(x1) dx22.

Up to a finite covering, all Lorentzian tori with non-trivial isometry group are of that type.
If G = 0resp.|G| > 0, theng is flat resp. conformally flat. We consider the family of
metricsG’ whereG (0) = 0 andG has only isolated zerosjjp = 0, p1, ... , pn—1 € (0, 1),
Pn+k = pr + 1 for all integerk. Then(R1, g) is incomplete in the three causal senses
forallg € G, and so g7, g).

In particular, let us consider the two subfamilies

G1=1{g€7d1G01 >0}, (2.1)
G2=1{g € GG (pi) #0, F(p))F(0) >0,0<i <n—1}. (2.2)
We have the following proposition (s¢@]).

Proposition 2.1. Letg € G1 U G».
1. Letng = sgnF(0). Then

X2

F — nopvEG+ F?2
X1 = Gy, + (F + noV/EG+ F2)d,,, X2=aX1+< o - )
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are two linearly independent isotropic vector fields fdtlge choice ofjg guaranteeing
the existence of the limit ip;).

2. The inextendible null geodesics &% are complete. Hence there exists incomplete
X1-geodesics sincel'1t1, g) is lightlike incomplete

As we remarked above, a Lorentzian torus need not be conformally flat. In fact, we have
the following characterization of conformal flatness (&

Proposition 2.2. Let(Mt1, g) be a Lorentzian surface

1. If there is a nowhere vanishing time- or spacelike conformal vector, fieah(M 111, )
is conformally flat. The converse is true if in addition M is compact
2. Every conformally flat compact Lorentzian surface is complete

We recall that a vector fiel& is calledconformalif Lx g = og for a smooth function
o (whereL denotes the Lie derivative).

3. Pseudo-Riemannian spin geometry

We will give a brief survey of the relevant spin geometric features we use in the fourth
section. We focus mainly on the signatuifie 1). A general reference |4].

Let (R”*9, (-, -) 5.4) be the standard pseudo-Euclidean vector space of signatugé
where p is the dimension of a maximal timelike subspace. We shall always assume that
the p first vectors of an orthonormal basis are timelike. pof ¢ = 2m we can identify
the associated clifford algeb@, , = Cliff (RPF4 (., Y pg) With End(A, ) = C(2™)
obtaining thereby an action of Cl,, , on A, , = C?". This action will be denoted by
thatisu(x, v) = x - v. An explicitisomorphism in signaturd, 1) is given by extension of
the mapping

elt—><_0i 6) and ezt—)(io 6) (3.1)

Next, we define the groups Spim ¢) and Spin (p, ¢). LetS, , = {x € RPT|(x, x), 4 =
1} andH, , = {x € RP9|(x,x), , = —1}.

Definition 3.1.

Spin(p, g) = {x1---x2|x; € Hp 4 U Sp,q}7
Spin, (p, q) = {x1---x21|x; € Hy 4 U S, 4 With an even number of timelike factgrs

In order to deal simultaneously with the pairs @Qg)/Spin(p, ¢) and SQ.(p, q)/
Spin, (p. ¢), we write G(p. q) andG(p, q), whereG(p, q) = Spin(p, q) if G(p,q) =
SO(p, ) andG(p, q) = Spin, (p, q) if G(p, q) = SOL(p, q). If we use(3.1)to represent
Spin(1, 1), we get the following lemma.
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Lemma3.2.

a O
Spin(L, 1) =38 = 0 :i:l la € R\ {O} ¢ .
a

The volume elemend = eg - e2 oOf Cly 1 defines—viewed as an endomorphism of
A1 1—asplitting ofA1 1 into the direct sum oﬁfl = Eigenspace ab for —1 = (z1) and
A7, = Eigenspace ab for 1 = (iz2), where(z1, z2) denotes the standard basis®¥ (the
sign convention followg1] and is motivated by the higher dimensional case). Reversing
the orientation interchanges$; ; with A7 ;.

Next, we consider spin structures@f”*4, g), that is reductiongQ, f) oftheG(p, q)-
frame bundleP to aG(p, ¢)-bundleQ. We have the following criterion for the existence
of such reductions.

Proposition 3.3. Let (M”74, g) be a connected pseudo-Riemannian manifold and=TM
£P @ n9 a splitting into a time- and spacelike bundle resp. of maximal rank

(i) (MP+4 g)is spin if and only ifwa(TM) = w%(n), wherew; € H' (M, Z,) denotes
the ith Stiefel-Whitney-class
(i) If (MPT4, g)istime-orientegthenthe mappingpin(M?*4, g) — m1(P, x), (Q, f) —
fm1(0, y) for y € f~1(x) is injective. In particular two spin structures which are
isomorphic as a twofold covering of P are isomorphic as spin structures
(iii) If Spin(MPT4, g) # ¢, thencard Spin(MP T4, g)) = card HX(M P14, Zy)).

For a proof of (i) se¢7], for (ii) and (iii) see[1].

In particular, every time-orientable Lorentzian surface admits a spin structure. One is
explicitly given by Qo = M*1 x Spin, (1, 1) and fo(x, @) = (x, A(a)). This spin struc-
ture will be referred to as theivial one; it is unique up to isomorphism M is simply
connected. On the other handMfis time-orientable and compact, thew1*1, ¢) carries
four non-isomorphic spin structures sindé(71*1, Z,) = Z, @ Zo.

If g = «?g is conformally equivalent tg, we can canonically associate a spin structure
(0, f)with every spinstructureQ, f)on(M?t4, g):if @, : P, — P;istheisomorphism
defined bys = (s1, ..., 5p4q) = (1/)s = (L/k)s1, ..., (1/k)sp14), then the subgroup
(D« o fHum1(Q, q) in m1(Pz, D, (f(q))) distinguishes byProposition 3.3 spin structure
(0, f) which can be shown to be isomorphic wit@, f).

Now, we fix a spin structuréQ, f) over(M?*4, g). The associated fibre bundle

§=0X5p.q) Arg
is a complex vector bundle of rank2+9)/2 which is called thespinor bundleassociated
with (Q, f). The set of smooth sections §fis denoted by"(S): its elements are called
spinor fieldsor spinorsfor short. A spinory may be represented by p, ¢)-equivariant
functiong € C®(Q, A, 4?79, thatisg(qg) = g~ 1¢(q) forallg € Q andg € G(p, q).
One may also think of a spinor as a collection of local sectiond/ — Q coveringM
together with a family of local trivializationg; € C*(U, A, ) verifying g5, = g Ys.
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Furthermore, we can consider the sections6f= Q Xé) Afl, where the fibrewise
splitting is induced by the volume element of Ciiff. M1t1, ¢.), the Clifford algebra
generated byT, M1 g,). The corresponding sections i\ S*) are callechalf-spinors
To emphasize the sign, we also speafasitiveor negative half-)spinors. In the subsequent
chapters, we will also use the following representation of half-spinogs:df I" (S¥) is
a positive resp. a negative spinor, we can wiitg) = f*(¢)u+1 for f* € C>(Q, C).
Using the representation of Spin 1) of Lemma 3.2the transformation law of * is given
by ft(qa) = (1/a) f(¢) and f~(qg.) = a f ~(q). The same holds if one considers the
complex-valued functiong; given by the local trivializationg; = fsu.

As for Riemannian spin bundles the covariant derivative: I"(S) — I'(T*M ® S) is
induced by the lift toQ of the Levi—Civita connectioZ in P. Fixing a local orthonormal
basiss = (s1, s2), we get

Vo =[5, V(gs) — 38(ViCs1, s2)e1 - e2 - ¢5]. (3.2)
We also verify the product rule
Vi(W - 9) = (VW) -9+ W - Vig.

The main difficulty in the pseudo-Riemannian setup is to define a suitable scalar prod-
uct on S. This can be done as follows: assur@'t!, g) to be time-orientable. Let
TMHL = £1 @ 1 be a splitting into a (now trivial) time- resp. spacelike vector bun-
dle. Fix orientations irf andn. P can be reduced to the structure grakip= SO(1) x
SQ(1), which is maximal compact in S, 1). The reduced bundle is given B =
{(s1, s2)|s1 positively oriented ir§, s positively oriented im}. Then Qg = f*l(Pg) is the
reductionofQto K = (Spin, (1) xSpin, (1))/Z, whichis maximal compactin Spin(1, 1).
We haveS = Q¢ x ¢ A11andTM = P; xx R*L Let(, -)4,, denote the standard her-
mitian product o1 1 which is K -invariant, but not Spin(1, 1)-invariant. We can extend
this scalar product to a fibrewise defined scalar produets on S. Now let Jg : § — S,
Je([q, v]) =g, e1-v]for g e Qg and the unit vector field; € £. We define

<(p1 1/f))C = (Jf(pv I/I)EX = (el U, w)Ale

wherep(x) = [7, v]andy (x) = [¢, w]. This is an indefinite, Spin(1, 1)-invariant scalar
product onS. Then the formulae

Vg, ¥) = (Vye, ¥) + (o, Vi)
and

hold.

Given (S, V5) over (M1 ¢), we can canonically define two first-order differential
operators, namely the Dirac operatbrand the twistor operatoP. In terms of a local
orthonormal basis = (s1, s2), they are given by

Dy = —s1- V‘fl(p + 52 Vsszgo and
Pp=—s1® (V5@ + 351+ Do) +52® (Vg + 352 Do).
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In the fourth section, we will deal with the equatioPsr = 0 and Py = 0 called the
harmonicresp. thetwistor equation, the latter being equivalentwiw = —%V - Do

for everyV e ¥(M**1). The solutions are referred to harmonicresp.twistor spinors.

The vector spaces of harmonic- resp. twistor spinors will be denoted ayd ¥. Fur-
thermore, we will considep+ = I'(S*) N $ and analogoush®y = I'(S*) N <.

The superscript 0 denotes the space of harmonic and twistor spinors resp. their dimen-
sion with respect to the trivial spin structure. We are mainly interested in the numbers
S = dim®)) and sy = dim(Z,), since they have the following well-known
property (se¢2,3)).

Proposition 3.4. Letg = Ag, and .‘6&) resp.f(i) the space of harmonic resp. twistor
(half-)spinors with respect t@. Then the maps

(i) ¢ € Ha) > 14 € Hra),
(i) ¥ €Ty > 27 Y4 e Ty

are isomorphisms. In particulas+, and .+ are conformal invariants

4. Spinor field equations and lightlike geodesicsin signature (1,1)
4.1. Harmonic and twistor spinors

Proposition 4.1.

(i) Letp beinI"(ST) resp I'(S™). Theng is harmonic if and only if
Vip =0 resp Vyp =0

holds for all X vector fieldsX resp )-vector fieldsy .
(i) Letp beinI'(ST) resp I'(S™). Theng is twistor if and only if

Vig=0resp V3o =0

holds for all Y-vector fieldsY resp A-vector fieldsX.

Proof. We prove the assertion only for positive spinors, the remaining cases being showed
in the same way.
Letp € I'(ST) and letX andY be aX-resp.Y-vector field which we writeX = X =
(s1 + s2) andY = Y, = (—s1 + s2).
(i) Using the local expression db, we see thap is harmonic if and only ifq - Vflgo =
s2- Ve which is equivalent to7y ¢ = o - V5,9 = —V3 ¢ (with the volume element
® = 51 - 52). Hencey is harmonic if and only itVy | ¢ = 0.
(i) Vig = —(1/2)s; - Dy fori = 1,2 is equivalent tov ¢ = —w - V5,9 andV;, =
—w - V3g, hencetovs . ¢ =0. O
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SinceV‘S,go(x) = [qx, V*(@)(gy)] for all g, € nél(x) andV € X(M) (whereV* denotes
the horizontal lift of V to Q), propositionProposition 4.Inay be restated as follows.

Coroallary 4.2.

(i) 94 =1{@ e C®(Q, Ail)é(l’l)@ is constant along the horizontal lifts afcurves.
(i) H_ ={p e C>(Q, Ail)éﬂyl)w”) is constant along the horizontal lifts pfcurves.
(i) T, ={@ e C>(Q, Afl)éﬂ’l)kz is constant along the horizontal lifts pfcurves.
(iv) T_={g € C™(Q, Ail)é(l*l)kb is constant along the horizontal lifts Atcurves.

A further characterization is given by the fOI’mLbeg,(l)q) = d/dsPS:,H_),(p(a(t +

5))js=0 for any smooth curve, where’Pg:,H_), denotes the parallel transport @falong
y between the fibres ;' (y (¢t + 5)) andz 5 (y (1)).

Corollary 4.3. Letg € I'(S1). Theng is a positive harmonic spinor if and only if for
any X-curvea joining two pointsx and y in M1, we havep(y) = [PZ._,q, v] for
¢(x) = [q, v]. Analogous statements hold for , T, and<_.

As a first application, we note the following proposition.

Proposition 4.4. There is a bijective correspondence between the{gets . |p(x) #
Oforall x}and{y € T_|¢¥(x) # Oforall x}.

Proof. If ¢ € I'(ST)is given b~yf+u1forf~+ € C*(Q, C), we can define a twistor spinor
Ve € I'(S7) by &ﬁ = 1/fFu_q, sincey 7. (ag) = 1/ (A% = al/f* (@) =
ay 7(q) = ga_ll/ffq_ (¢),s0 Y fTu_1 defines indeed & (1, 1)-invariant function. Because
of X*(1/fT) =0,y =[q, 1/ f T (¢)u_1] defines a negative twistor spinor. O

Proposition 4.5. Lety € 4. If (x) = 0, thengy, = 0. In particular, we havel, <1
for any spin structure if there exists a dense null line(#fi*1, g). Analogous statements
hold for$_, ¥, and¥_.

Proof. The first assertion is a consequence of the above corollaries. Assume that there is
anx € M1 with [, is dense il 111, Letgy, 92 € $H4 with @1 # 0. Pickce € C such that
@2(x) = cp1(x). Hence(pz — co1), = 0, that ispp = ce1 for continuity reasons. O

4.2. Examples

We now apply the preceding results to compute some explicit examples. For the sake of
simplicity, we will only deal with positive harmonic spinors, but all examples extend to the
remaining cases in an obvious way.
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4.2.1. Simply connected surfaces

As observed irSection 2 two different null lines intersect at most once and closed
null lines cannot exist. Furthermore, the frame bunglds trivial since (M1t1, Q) is
time-orientable, and the resulting trivial spin structure is unigue up to isomorphism.

Proposition 4.6. If M1 is simply connected, then. = +oo.

Proof. Let 8 : [0, 1] — M1 be a)-curve with lift 8 to Q, and letf, : [0, 1] — C be

a family of linearly independent smooth functions whose support is strictly contained in
[0, 1]. Define a Spin (1, 1)-equivariant functio,, : 0 — AIl by extendingﬁn(ﬁ(t)) =
fa(@®uy first to Q|4 by the transitive action of Spin(1, 1) on the fibres, and secondly to
M**1 by parallel transport odk = | J, .4 Lx andg, = 0 on A°. O

This construction depends crucially on the fact that for simply connected surfaces, the
local and the global behaviour of the null lines are the same. Therefore, we can extend local
solutions to global ones. This observation is the key for the construction of harmonic and
twistor spinors inSection 4.3we will link the global behaviour of the null lines to the
spinors; by studying the null lines in the large, we will be able to extend local solutions or
to find obstructions for doing so.

4.2.2. Diagonal metrics on Lorentzian tori
We consider Lorentzian to¢l'1+1, g,) whose metric is given by diagonal metric

gr(x1, x2) = —/\%(xl, xz)dxf + A%(xl, x2) dx%
for a1, A2 # 0in C®(RY)Z,

4.2.2.1. Left-invariant metrics. First we consider the case wherg A, are constant. Thus
(T, g,) may be seen as a Lie group provided with a left-invariant metric. Sin¢el+1)

has no two-torsions, we may treat the harmonic and the twistor equation for all four spin
structures simultaneously by tools developefllinwhich we will briefly sketch.

The problem is to compare two non-isomorphic spin structtées f1) and(Q2, f2)
and to find conditions foF (S1) andI"(S2) to be isomorphic. LetM?*4, g) be a pseudo-
Riemannian spin manifold of signatu(g, ¢). Let R" = {(¢1,¢2) € Q1 x Q2| f1(q1) =
f2(g2)}. Z7 acts naturally on each fibre @#;, hence onk’. The pair(R, u), whereR =
R'/Zp andu : R — P,[q1,q92] — fi1(q1), is called thedeformationof (Q1, f1) and
(Q2, f2).If (Q1, f1) and(Q2, f2) areisomorphic, theR isismorphictoP x Z,. G(p, q) x
75 acts onR by [g1, ¢2], (A, m) = [q1a, goam, wherea € »~1(A). This action is well
defined, therefore providing@ with the structure of aG(p, ¢) x Z»-fiber bundle. Next
we define the vector bundlE = R/G(p,q) xz, R over M. Its complexification®
is given by EC = R/G(p, q) xz, C. Lets; : U — Q; be two local sections and let
[5] = [(1.52)] : U — R, where [] denotes the equivalence classeskinLete € EC.
Thene can be represented in the foem= [{5}, z] ({-} denoting the equivalence classes in

R/G(p, q)).
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Proposition 4.7. Themaps : S1Q EC — S, defined by8([51, v]: ®[{5}, z]x) = [52, zv]«
is a vector bundle isomorphism

Hence, in the case whefeC is trivial, the spinor bundles; ands, are isomorphic. For
instance, this happens(i®1, f1) and(Q>, f») are isomorphic, foEC is then isomorphic to
MP*4 %72 Thus equivalent spin structures induce isomorphic spinor bundles. Furthermore,
we yield the following corollary.

Corollary 4.8. On a surfaceM each two spinor bundles are isomorphic

Proof. For the first Chern class of the complexificatiBf of the real line bundle holds
2¢1(EC) = 0. SinceH?(M,7Z) = 0 orZ depending on whether or ndf is compactE‘C
must be trivial. O

Next we want to know how the spinor derivative transforms under this isomorphism.
Let VE® be the connection induced by the lift ®of the Levi—Civita connection of.
Then one shows thatE* is flat, hence fon = [{5}, 7] € F(El%) withz : U — C, we have

V5Cn = [{§}, V(n)]. Therefore, the following diagram commutes for ev€rg X(MPT4):

($; ® E°) I(S2)
VY @gpe 1 O Vi
(S, ® EC) I(S,)

C
whereVy! @ ,c lg ®@ 1) = Vo' ® 1+ ¢ ® VE 1.
v
If we assumeEC to be trivial, then we can choose a nowhere vanishing seetion
mr+i — EC. We define the complex-valued form by the equatiorV{?Ce = w.(V)e

anda, : I'(S1) — I'(S1® EC) by a(¢)(x) = ¢r ® e,. Then the following diagram
commutes:

I(51) I(S; ® E°) I'(S52)
st TS @ 52
v‘/ +u.)e(v) \,,VV ®V":( C) v\/
l Qe i .
r'(S,) I'(S; ® E°) T'(S,)

Letus now consider the special case of aconnected Lie grqurpvided with a left-invariant
metricg. Let p : G — G be the universal cover af. 71(G) acts as a group of deck
transformations. Sincg is left-invariant, we can trivialize? by choosing: left-invariant
vector fields onG, thatisP = G x SO, (p, q). Therefore,0o = G x Spin, (p, g) with
fo = id x A defines the trivial spin structure a®. The lifts X; of the vector fieldsx; to
G are globally left- andr1(G)-invariant vector fields oG, henceP = G x SO, (p, q)
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andQo = G x Spin_(p, q), fo = id x . We know that SpitG, g) = Hom(z1(G), Zy).
Let x € Hom(1(G), Z2). m1(G, g) acts onG x Spin, (p, ) throughx by w, (g,a) =
(, g, x(w)a),wherew € m1(G, e). LetQy = G X[z,(G.e),x] SPIN.(p, g) andfy : Oy —

P, [g,a] — [p(8), A(@)]. Then(Q,, fy) defines a spin structure and the following pro-
postion holds (cf[1]).

Proposition 4.9.

(i) SpinN(G, g) ={(Qy, f)Ix € Hom(m1(G), Z2)}.
(i) The spinor bundleS, = Qy xspin, (p.q) 4p.q associated with the spin structure
(Qy, fy)isgivenbyS, = G x, A, . )
(ii) The deformation afQo, fo) and(Q,, f,)isgivenbyR, = (G/ker(x))xSO(p, q).
Furthermore EC = (G /ker(x)) xz, C.

Assume that we have a nowhere vanishing seetjos I'(EC). Such a section is given
by a mape, : G — C without zeros such that(w, §) = x (w)e(g). If for x = 1, we have
€1 = 1, we can identifyS; with the trivial spin structure and’(S1) with C*(G, 4, ;).
Let (g, Id) be a global section oP = G x SOy(p,q) and letf,1] : U — Q, be a
local lift of this section. Thery (x) = [{g(x)}, 1] € F(EI%) corresponds to this section

ande, (x) = [{3(0)}, €, (F())] = €, (3(0))y (x). SinceVE"y =0, we get
C
Vi ey = ([de)(V)y = e M (dey) (V¥)ey.

hencew, (V) = e;lv*(ex), whereV* denotes the lift o € A(G) to Q, .

Identifying I"(S,) with I"(S1) = C*(G, 4, ) yields Vi)‘(p = V‘S}(p + e;lv*(ex)w
forp e C(G, Ap y).

For instance, consider the Lorentzian to@s*2, g;). The universal cover is given
by p : R2 — TH1 p(x1,x2) = (e¥7™1,¢271%2) Thenmy(T) = Z & Z acts onR2
by (z1, z2), (x1, x2) = (x1 + z1, x2 + z2). On the other hand, Hom1(T), Z2) can be
identified withZ, @ Zo = {(a1, a2)|a; € {£1}} by x1 = x(1 @ 0) = £(7/2(1~a1) gnd
x2 = x(0® 1) = 17/20-a2) \W\e define

€q(x1, X2) = e17/2(x1(1=ar)+xa(1-az))

Thenewy = 1 andey((z1,22), (¥1, X2)) = X1 x5 €x (X1, %2) = x (21, 22)€y (X1, X2).

Now w, (X,)(x) = €, 1((s1 + 52)*) () (%), hence

(X)00) i 1—a1+1—a2
o, Xs)xX)=—| —+ —.
X 2 A A2

Consequently, for a spingfu; € [ (Sh,.ap) = C®(THE, Cuy) to be harmonic, we yield
the following equation:

~ - 1 ~ 1 = im (l—a l-az\ -
N 1 2
VX1f+w(X)f_rlaxlf+r23x2f+?< +_)

=0.
A Ao !
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Letthe development of into a Fourier series be given Bix1, x2) = Y ;o7 fig €7 Kath2),
Then we get the equation:

Y F A —ay+1 N A —az+ 1\ orikatio) _ g
A1 A2
k,leZ

Thus f € C>°(T1*1, C) defines a harmonic spinor if and only if
- A
fHZOOr%—ay+1=—X%4—aT+D
2

Since constants are solutions for the trivial spin structure anddy +1and4 —ax + 1
are inZ, we finally find

84 for
S(a,az) (A1/22) € Q (A1/22) ¢ Q
(+1, +1) +o00 1
(+1, -1 400 0
(-1, +1) +00 0
(-1, -1 +o0 0

4.2.2.2. Closed metrics.Next, leti; € C""(]RZ)ZZ be two periodic functions satisfying
the additional condition:

Ox,A1 4+ 0 A2 =0,

that is the formh. = A1 dx1 — A2 dxz is closed. Therefore we refer to this type of metrics
asclosed Fix the orthonormal frame = (1/A19yx,, 1/428y,). Then diX,) = 0—a fact

we will reconsider later. In terms of Fourier coefficients, the closedness condition may be
restated as

Ihyy = kAyy, 4.1)
wherei;,, denotes thélth Fourier coefficient ok;. In particular, we haveé, = Az, =0
for [ andk different from 0. These formulae will prove useful for the subsequent computa-

tions. We fix the trivial spin structure and trivialize with respect to the badiksing(3.2),
we may rephrase the equatiﬁ’lisful =0as

—320x, f = M0y f + 3 (Bxph1 + 0 A2),
S0 using our additional assumption gives
—20x; f = 218y, f- (4.2)

We remark that the constant spinordefines a solution that projects onto the torus. Fur-
thermore, if there exists a dense null line, we already knowlmposition 4.%hat there
cannot exist any further linearly independent solutions.

In order to find non-trivial solutions we define the function

fa<x1,xz>=exp<ina ( / 1<A1<s,xz>+x1<s,0)> ds— / "2, ) + 220, ) dr))
0 0
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for0 # a € R. Thenf, defines a solution fdProposition 4.®nR. In order to be inducible
on the torug’, we must impose the double—periodicityf)gj, that isfa (x14+n,x2+m) =
falx1,x2) forn,m € Z.1f l; = [[ ;111 2 AT denotes the Oth Fourier coefficientiof
we get the following criterion.

Lemma4.10. f, € C*(R2, C)Z* if and only ifal; € Z fori = 1, 2.

Proof. We havef, (x1 +n, xo + m) = f,(x1, x2) if and only if
1 1
o n/ (A1(s, x2) + A1(s, 0)) ds — m/ (A2(x1,1) + A2(0,1)) dt | € 2Z.
0 0

Now, [5 21(s, xp) ds = I3 and [y Aa(x1, 1) ds = I (use(4.1)), so f, € C®(RZ, C)Z° f
and only ifa(nly — mk) € Z for everyn andm in Z. O

In particular, ifl1/l> = p/q € Q (wherep andg have no common divisor), thefiq,/l2

defines a solution. Since the s{gimuﬂm € 7} is linearly independent ih? , we have
89_ = +o00.

Example 4.11. Let ¢ > 0 be a rational number anfl : R — R be a smooth function
without zeros with period 1 such thatf (2x) # c for everyx € R and f(2p;) = —c/2

for po =0, p1,...,pn = 1 € [0, 1], but f'(2p;) # 0. For instance, we could choose
¢ =2andf(x) = (1/10) cos(2x (x + (1/4))) — 1. Then the diagonal metric defined by
A(x1,x2) = —f(x1 — x2) andiy = — f(x1 — x2) — c is closed. Furthermoré; /I =
1/1—c € Q, hencerSS’L = +oo0. If we expressg, in the new coordinateéx, y) given

by x = (x1 — x2)/2 andy = (x1 + x2)/2, we getg, (x,y) = (2cf(2x) + ¢?) dx? —
4(f2(2x) + 2f(2x) + 2) dx dy + (2cf(2x) + ¢2) dy2. Because of our assumptiogs € G»
(seeProposition 2.}, sog, provides an example of a non-conformally flat diagonal metric
since it is not complete.

Lemma4.12. There are no dens&-null lines if and only ifly/l2 € Q.

Proof. As the global properties of the null lines such as denseness are independent of the
parametrization, we can consider the flow of aktiyector field. For instance, we may
chooseX = A,d,, +11dy,, where we assume that, Ao > 0. Let the flow ofX be given by
(x1(2), x2(2)). We establish the assertion by computing the rotation number of this flow (see
[5] for details).A2 > O impliesii dx; — A2 dxz = 0. Since the form. = A3 dx; — A2 dx2
is closed, we yield an exact ordinary differential equatioriRdn Hence we have to find
anF : R? — R such thatd,, F = A1 andd,, F = —X,. The initial conditionx2(0) is
determined by (0, x2(0)) = ¢ for a constant.

Integration ofdy, F = A1 yields F (x1, x2) = [5* A1(s, x2) ds + f (x2), wheref’(x2) =
—h2(x1, x2) — [ (B2A1) (s, x2) ds = —A2(x1, x2) + [ (01A2) (s, x2) ds = —A2(0, x2). A
possibleF is given byF (x1, x2) = [g* A1(s, x2) ds — [5? 12(0, s) ds. We choose = 0 and
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use the Fourier series af anda; to get the following equation:

e27r|kx1 -1 iix ||X2 _ 1
llxl_’_Xl:)\'lH 2rik e27l 2 12x2 Z)"Zkl 2l

k#0 k;éO

Evaluating inx; = n € Z yields

e2ribo _ q
ll}’l — lzxz(n) — ;)»ZMW = 0,
10
hence
x2(n) l1 g2rike _ 1
n b n ZZZ Mol
1;&0

Since the Fourier series of smooth functions are absolutely convergent, wep have
liM,— 1oo(x2(n))/n = 11/ 12, whence the assertion. O

We finally get the following proposition.

Proposition 4.13. Let g be conformally equivalent to a closed diagonal meffiben the
following holds 1 and+oco are the only possible values fai. Furthermore these dimen-
sions are characterized as follows

() 82 = 1iff /1, ¢ Qiff all A-null lines are dense
(i) 89 = +o0iff I1/15 € Qiff all X-null lines are closed or asymptotic of a clos&ehull
line.

4.3. u-Surfaces

By Corollary 4.2 a half-spinor which is harmonic or twistor may be seen as an object
that is constant along the lifts of the corresponding null lines. Unfortunately, we have no a
priori control over the parallel transport i, and due to the non-compactnessxdl, 1),
the lifts of the null lines may even be unbounded (Beeposition 4.1). Therefore, we
focus on cases where a direct link between the null lineglht!, g) and the harmonic
and twistor spinors can be established, without lifting the null line@ to

As we did earlier, we restrict our investigation to the case of positive harmonic spinors.
One can prove analogous results by interchanging suith§ — andX/), as pointed out
above.

Definition 4.14. Let ¢ € I'(ST) be a positive harmonic spinor. A smooth functiep :
M1 s C verifying

(i) mp(x) =0ifandonlyife(x) =0and
(i) p is constant alonge-curves
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is said to be a mass functional for A w-surface is a Lorentzian surface admitting a mass
functional for everyp e I'(S™).

We shall give examples gi-surfaces in the following section (s&xample 4.36nd
Corollary 4.37in conjunction withProposition 4.4Y. The reason for looking for such mass
functionals is the following property.

Lemma 4.15. Let (M1*1, ¢) be au-surface. Letp be a positive harmonic spinor and
x € M such thaip(x) = 0. If (x,) C I for a fixedA-line / converges ta, theng; = 0.

The general idea to produce obstructions to the inequality 2 is to assure that a single
zero of a harmonic spinor is propagated along all null lines, therefore forcing the spinor to
be zero everywhere. We note the following “heritage principle”.

Corollary 4.16. Let(M't1, ¢) be au-surface Lety be a positive harmonic spinpand
I a closedX-line. If ¢, = 0, theng = 0 for every asymptoti¢ of /.

Although all spin structures onja-surface can be treated simultaneously as we shall see,
the following proposition illustrates how the non-trivial spin structures differ from the trivial
one in terms of the parallel transport.

Proposition 4.17. Let(M1*1, g) be au-surface with a dens&-line /. Then there exists a
local sectiors : U — Q and a convergent sequentg,) ¢ U NI with x, — x € U such
that the following property holdsf (a,) C R is defined b)ﬂ%oﬁxna:(xo) = 5(x,)8&q,,then
for a subsequencer,,) we havea,, — oo or a,, — 0, that is{g,,} is unbounded in
G (1, 1). Recall that according themma 3.2

a, 0
S =\ 0 1/a, )

Proof. Assume the opposite. Then consider the horizontalitif / to Q. Extend/* to a
(continuous) sectiofy : M1 — Q by §(x) = lim,l*(x,) for x, € [ — x. This limit
exists indeed, sincE (x,) = ngo_wl*(xo) is bounded inQ by assumption. Henc@
would be isomorphic to the trivial spin structure. |

Corollary 4.18. If there exists a dens&-line on au-surface(M1*1, g), thens, = O for
every nortrivial spin structure

Proof. Using the notation of the preceding proposition, we have
) = [PL, §(x0), f5(xo)ua]
= [$(xn), &a, f5(x0)u1] = [§(xn), fi(x0)anui] — ¢(x).

Hence, ifa, — +o00, then f;(xg) = 0. If a, — 0, thenp(x) = 0. In both cases, the spinor
¢ has a zero, implying = 0 by Lemma 4.15 O
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From now on, we will mostly consider compagetsurfaces, though the techniques and
results can be applied to Lorentzian cylinders as well. Due to the “denseness obstruction”
Proposition 4.5we can restrict our attention to the case where no dense null lines occur.
First, we introduce the subsequent notation.

Letx € M1 andl;, andi, be two closedt-lines which do not contain. SinceM1t1is
homeomorphic to a torus, the connected componentg’dft\ (11 U I») are open il 1+1
and homeomorphic to a cylinder without boundary. Cgi, (x) denote the cylinder which
contains. Its closure is given by, (x) = Cyyy,(x) Uiy Ulo. In the case wherg = I,
as a set, we hav€y,;, (x) = M1 so the whole torus itself may be considered as a closed
cylinder. Now let bex such that, is an asymptotic of the two closed null lingsand».

Then the cylindelCy,;, (x) will be written Ay, (x). For further reference, such a cylinder

will be calledasymptotic Closed null lines are not allowed to be homotopic to a single
point, hence there are no more closed null lines in any asymptotic cylinder. Since every
asymptotic tends thy or Iz, we get the following lemma.

Lemma4.19. Lety be a positive harmonic spinor on a compaesurface Then its mass
functional,, is constant on every closed asymptotic cylinder

Thus, if the spinor has a zero in an asymptotic cylinder, it must be zero on the whole
cylinder. In order to treat the case where the union of closed null lines is demskh we
introduce a further type of cylinders which does not contain “ribbons” of closed null lines.

Definition 4.20. A cylinder Cy,, is called non-resonant if for any two arbitrary closed null
linesly, I in the closure of’;,;, there is an asymptoticin Cr.i,-

Lemma 4.21. Let ¢ be a positive harmonic spinpand C = Cy,;, be a non-resonant
cylinder. Thenu, is constant orC.

Proof. Consider the seft := {x € C|l, isanasymptotic A is open and dense i@. As
the total differential of., vanishes oM as a consequence bémma 4.19the denseness
of A implies the result. O

Corollary 4.22. Let(M'*1, ¢) be a nonresonaniu-cylinder and letpy, ¢» be two positive
harmonic spinorslf there exists ar € M1 such thatpy(x) = @2(x), thengs = ¢». In
particular, every positive harmonic spinor with a zero is identically zara s < 1.

Definition 4.23. Let (M1*1, g) be a Lorentzian surface arda closedX-line. The spin
bundleQ is calledA-trivial along!, if the reIationP,%_)xq = ¢ holds for everyx € [ and
q € (Q)x-

Lemma4.24. Lety be a positive harmonic spinor that has no zero along a closdite
[. ThenQ must beX-trivial along /.
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Proof. By Corollary 4.3we knowthat(x) = [¢, v] = [P%qu, v]. Hence, ifPl%qu =
qg for a uniquely determineg e Spin(1, 1), we haveg~tv = v. It follows ¢ = id by
Lemma 3.2 0

So far, we have obtained obstructions to the inequdlity> 2. In the case where this
inequality holds, a third type of cylinder becomes interesting.

Definition 4.25. A closed cylinderR,,;, = Cy,;, which does not consist of a singleline
is said to be resonantif is closed for every € Ry,,.

Proposition 4.26. Let(M1*+1, ¢) be a compact-surface

(i) A non-trivial positive harmonic spinor cannot be zero on every resonant cylinder
(ii) If 5, > 2, then there exists &-trivial resonant cylinderR on M1, that is Q is

X-trivial along every closedt-line in R.

Proof. (i) is a consequence of (i). To prove the first assertion, let us assume the opposite.
It suffices to show that,, is locally constant.
Let x € ML If I, is an asymptotic, thepya, () iS constant byLemma 4.19
Otherwise/, is closed. If for every neighbourhodd of x there exists’ € U such thai,
is an asymptotic, them is in the closure of a non-resonant cylinderlf x € int(C), then
Wy IS constant on a neighbourhoodxoby Lemma 4.211f not, thenx € 3C N dR, where
R is a resonant cylinder. Thys, = 0 on a neighbourhood of, sincej,c = const and
e = 0 by assumption. O

On the other hand, whenever there existsamivial resonant cylinder od/1+1, then
we can produce harmonic spinors ashiroposition 4.6since theX-triviality guarantees
that the spinors constructed in this way are well defined. Hence we arrive at the following
proposition, generalizing the left-invariant case.

Theorem 4.27. Let(M1*1, g) be a compact.-surface Then the only possible dimensions
areé; = 0, 1 and+oo. These cases are characterized as follows

() 6+ < 1ifand only if either
e there exists a dens&-line in which case we hav&, = 0 for the non-trivial spin
structures or
e M**is non-resonant or
e there exists nat-trivial resonant cylinder on/1+1.
(i) 8, = 4o if and only if there exists a resonadttrivial cylinder on M1+1. In this
case we haves, = +oo for every spin structure

As we have already seen for the left-invariant case, the dimengions 0 and 1 can
occur and depend on the given spin structure.
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4.4. Spinors and conformal flathess

We will now study the relationship between the existence of harmonic and twistor
spinors and conformal flatness. In particular, we will consider the geometric implications
of X-triviality.

As we saw inProposition 2.2conformal flatness is related to the existence of nowhere
vanishing time- resp. spacelike conformal vector fields. With every sginerl”(S), we
can canonically associate a vector field that is conformal in the case of a twistor spinor.

Definition 4.28. Let (MP+4, g) be an orientable and time-orientable pseudo-Riemannian
spin manifold, and ley € I"(S). We define the associated vector fi#igl by the equation

g(Vy, W) =i w -y, y)

for W e X(MP+9).,
A direct computation yields the following proposition (see, for instg2te

Proposition 4.29. Letg € I'(S) be a twistor spinarThenVy, is a conformal vector field
More preciselywe havely, g = (4/n)ReiPTH Dy, ¥r))g.

Next, we determine the associated vector field of a spinor in signétute.

Lemma4.30. Let(M1*1, ¢) be time-orientable ang € I"(S). Lets = (s1,50) : U — P

be an orthonormal frame with a lift to Q¢ (cf. Section 3. Letys = ¢ u1 + ¥y u_1 €
C>(U, A1,1) be the local trivialization ofyy with respect tas. ThenVy, = [y |2X, —
|¢§_|2Ys. In particular, Vy, is a causal vector field which is timelike if the local components
¥~ andy~ have no zeros, and lightlike in case of a half-spinor without zeros

Proof. Let w; andw; be the local components ¥ € X(M) with respect tos, that is
W = wis1 + was2 = [s, wie1 + woez]. A direct computation yields< W - ¢, ¢ >=
(Vs P+ W Pyws + (12 = [ Pwa. If Vy = Vyasi 4 Vyosz, we getVyy =
(v 12+ 1w 13 andVyz = (1¢; 12 — |y |?). Furthermore, sinck = g(X,, ¥;) > 0 and
g(Vy, Vy) = =221y 12|y |2, the vector fieldvy, is causal. O

Remark 4.31. Let X be aXx-vector field andy a positive harmonic spinor. Theéf- ¢ = 0.
In particular we gevV,, - ¢ = 0.

Corollary 4.32. Let (M*1, g) andy* e I'(S*) be two twistor spinors without zeros
Then(Mt1, g) is conformally flatIn particular if M is compactthen(M+1, g) is com-
plete

Remark 4.33. According toProposition 4.4the same result holds for harmonic instead of
twistor spinors.
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As we have already seen faktriviality, harmonic resp. twistor spinors without zeros induce
certain “flatness” properties. Therefore, we will look more closely to Lorentzian surfaces
that admit nowhere vanishing solutions to the harmonic resp. twistor equation.

First, we recall the following statement.

Proposition 4.34. Lety € I"(S) be a harmonic spinor oM ?*4, g). Thendiv(V,) = 0.

Definition 4.35. A time-orientable Lorentzian surfa¢a/1*1, ¢) is said to beX- resp.)-
conformally flatif there exists a global orthonormal frasme (s1, s2) suchthatdiyX,) =0
resp. diY;) = 0. We call a Lorentzian surfag@/1t1, g) s.c.f. if (M111, g) is eitherx-
or Y-conformally flat.

The notion of semi-conformal flatness will be justifieddorollary 4.42

As we did for spinors, we will concentrate cttconformally flat surfaces; analogous
statements hold fgp-conformally flat ones.

Since everyX-vector field can be written a%, with respect to a suitably chosen basis, a
time-orientable Lorentzian surface¥sconformally flat if and only if there exists#vector
field X such that di¢X) = 0. Furthermore, it follows that the notion of semi-conformal
flatness is invariant under conformal change of the metric: If there exigtsexctor field
X on (M1, ¢) with div(X) = 0, then we can find anothét-vector fieldX e X(M) with
div(X) = 0 (Whered|v denotes the divergence operator associated with the conformally
changed metrig¢ = Ag) as can be seen from the formmiw(V) V(In(A)) + div(V).

Example 4.36.

(i) Asweremarkedisection4.2.2closed diagonal metrics admitlightlike divergence-free
vector fields and are therefore s.c.f.

(i) We are going to exhibit further examples by a direct computation of the divergence:
let us consider a Lorentzian torus with standard coordinates:») and volume form
w. LetV = kd,, + 19y,. Using the formula dxw) = div(X)w, we get di(V) =
d1k+0d20+(1/2)V (In |det(g)]). In particular, ifdetg) = 1,thendi(V) = 91k+02l. As
semi-conformal flatness is a conformal invariant, we may always assume—by rescaling
the metric with the factor1/det(g)—this assumption to be fulfilled. For instance, if we
consider the family of metrics given [f2.1) and (2.2)we get the following corollary.

Coroallary 4.37. Every metric inG1 U G2 defines an s.c.f. surface

Proposition 4.38. Let(M1*1, ¢) be a timeorientable Lorentzian surfac&@hen the follow-
ing assertions are equivalent

(i) (M1, g)is X-conformally flat
(i) There exists a global section*! — P such thadiv(X,) = 0.
(iii) There exists &-vector fieldX such thatdiv(X) = 0.
(iv) ViCs; =0fori=1,2.
(v) There exists a positive harmonic spinor without zeros
(vi) There exists a negative twistor spinor without zeros
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Proof. Only the implications (ii))= (iv), (iv) = (ii), (v) = (iii) and (ii) = (v) need
proof. (i) < (v): by a direct application of the Koszul formula, we prove the following
lemma. O

Lemma 4.39.
—38(Xs, [Xs, ¥]) = div(X,) = g(V5Ts1, 52) = —g(VxCs2, 51).
Then(3.2)implies the following corollary.

Corollary 4.40. Locally, we have the identityf(x[i os] =[5, Xs(p;) — (1/2)div(Xy)eq -
e2 - ¢5]. In particular, if (M1, ¢) is X-conformally flafwe getvy [3, ¢5] = [3, X (¢5)]-

Furthermoreg(V)';fs,-, si) = 0fori, j € {1, 2}. By the lemma, we havg(V)'-(‘fsl, $2) =
—g(V)L(?sz, s1) = div(X,), whence the equivalence.

(v) = (iii): since div(e/ X) = e/ (X (f) + div(X)), the A-vector fielde/ X will be
divergence-free ifand only X (/) = —div(X) holds. ByLemma 4.30we haveV,, = 1 X,
with A # 0. Application ofProposition 4.34jields X (In |A]) = —div(Xj).

(i) = (v): lets : M1 — Qg be a global section in the trivial bundle. Thep = u1
defines a positive harmonic spinor without zeros.

Corollary 4.41. On aA-conformally flat surfacewe haveSS’r > 1.

Corollary 4.42. (M*1, g) is conformally flat if and only if(M1*1 ¢) is x- and )-
conformally flat

Proof. For aflat metric, every constant defines a harmonic resp. twistor spinor with respect
to the trivial spin structure. The implication follows then franoposition 3.4We yield
the converse fronTorollary 4.32 O

Next, we will prove some further properties &fconformally flat surfaces.

Definition 4.43. A Lorentzian surfacéM '+, g) is said to bet- resp )-complete, if every
X- resp.Y-geodesic is complete. A Lorentzian surface thatisesp.)Y-complete is said
to be semi-null complete.

Proposition 4.44. A compactt-conformally flat surface i-complete

Proof. By Proposition 4.38v), we haveV)L(‘fXS = 0, so that theX;-geodesics are given
by the flow of Xj. ) O
Example 4.45.

() The interdependence of semi-conformal flatness, positive harmonic spinors without
zeros and semi-completeness is demonstrateBxXaynple 4.11since the harmonic
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half-spinors we found have no zeros, the surface must be semi-complete. But we showed
that this metricis ir§j2, so it is not conformally flat. Hence, fro@orollary 4.4%ollows
that (711, g) is complete for one type of isotropic geodesics, and that there must be
incomplete geodesics for the other type, in accordance®vitposition 2.1

(i) Considerthe following example taken frd®y: lett : [0, 1] — R be a smooth function
with T(a) = 0, butz’(a) # 0, and whose support is strictly contained inJ Extend
7 periodically on the whole real line and defig@,y) = 2dvdy—7(x)dy2 Theng®
G, henceg” is lightlike incomplete. For instance(t) = (a, t’(a) In(t+(1/1'(a)))) is
a closed incomplete geodesic which without loss of generality we assumétdbes
any positive harmonic spinor must be zerojyarBut ast_c ] = 0 for e sufficiently
small,(T1+1, g) contains art-trivial resonant cylinder, and therefote = +oo. This
example shows that there exists not conformally flat tori Wittrivial resonant cylinder
which are nott-conformally flat.

Proposition 4.46. On aX-conformally flat surfacewe havesy, = T_.

Proof. Themapsd : 9, - T_,p > (i/QYs-pand¥ : T_ — H ., v (/X5 ¢
are bundle isomorphisms inverse of one another. O

Proposition 4.47. Every s.c.f. surface is a-surface

Proof. Lets = (s1, s2) : M — P be a (global) orthonormal frame with di¥,) = 0. We
define

me(x) = (Y- @, ¢).

Lets be alocallift ofs to Qsl. Forthissection, leg = [, ¢5]. Thenu, (x) = (Ys-@, ) (x) =
—2|¢;s (x)|2, where-| denotes the absolute value functior@Thus (i) and (i) oDefinition
4.14hold.

Sincey is a positive harmonic spinor, we havés ¢ = 0.Consequently, we g&ft, (1) =
(V)L((fn~go, ®). SinceV)L(‘st = —V)L(?s1+V)Lfsz = 0 byProposition 4.38iv), the assertion
follows. O

The classification of the possible dimensionssgfin Theorem 4.27#nay be restated as
follows.

Theorem 4.48. Let (M+1, ¢) be a compacf-conformally flat Lorentzian surfac&hen
84+ = 7_ and the only possible dimensions #&r are 0, 1 and +occ. These cases are
characterized as follows

() 6+ < 1ifand only if either
o there exists a dens&-line in which case we havk, = 0 for the non-trivial spin
structures or
e M*1is non-resonantor
o there exists nat-trivial resonant cylinder onv/1+1,
Furthermore 8 = 1.
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(i) 84 = +oc if and only if there exists ai-trivial resonant cylinder on 1, In this
case we havel, = +oo for every spin structure

Next we will show that in some sengéconformal flatness is forced by positive harmonic
spinors which have non-zero “mass”.

Definition 4.49. Let (M1*1, g) be a Lorentzian surface ani®, =, M*1; G) a principal
fiber bundle oves*1. A (local) sections : U — P is said to bex- resp.)-parallel if
for everyX- resp.y-curvea : [a, b] — U, we havePr.  s(a(a)) = s(a(b)), whereP!
denotes the parallel transport fhalonge.

Lemma 4.50. Lets = (s1,52) : U — P be a local section of the orthonormal frame
bundleP. Thens is X-parallel if and only ifdiv(X;) = 0. Furthermore if s can be lifted
to a sectiors : U — Q of Q, thens is X-parallel if and only ifdiv(X,) = 0.

Proof. Let « be the flow generated h¥; in U, and IetPO&C be the usual parallel trans-
port in TM**! alonga induced byP”. We haveViCs;(x) = d/diPLE o5 (@(1)),_o =
d/dt[s(«x(0)), e;] = 0, hence divX,) = 0 by Proposition 4.3&v). O

For the converse, et denote the Levi—Civita connection . Since di X;) = —(1/2) —
g(vﬁl??sl’ s2) = 0, we gets*Z(X) = Z(ds(X)) = 0 for every X-vector field X (cf.
Corollary 4.40. Hences*Z(o/(t)) = O for every X-curvea : [a,b] — M*L thatis
a;‘(a(a)) = lift of « starting ins(a(a)) = s o «. It follows thatPgs = O‘.;k(a(a)) = s(a(b)).
Sincef o P2 = PP o f ands*Z(X,) = —div(X,)w = 0 for the lifts ofs andZ to Q,
we deduce the same result for the spin bur@le
The notion ofX-triviality can then be reformulated as follows.

Corollary 4.51. Let! be a closedt-line. ThenQ is X-trivial along [ if and only if/ can
be parametrized such theiv(l’) = 0. In particular, such a parametrization makéto a
geodesic

Proof. Choose an orthonormal framsesuch that’ = s1 + s2 and repeat the reasoning of
Lemma 4.50 U

Remark 4.52. As in the case of conformal flatness the condition(#iy = 0 can always
be locally realized. Indeed, B : (a,b) — U is a)Y-curve, pick a section : || — P
and extend this section alii by parallel transport of (8(¢)) in the X-direction. Hence
s . U — P is X-parallel by construction and well definedlf is conveniently chosen,
thatisp intersects every-line in U only once and there are no clos&dines (e.g. ifU is
simply connected). Then diX,) = 0 byLemma 4.50

4.5. Conclusion

Like for compact Riemannian surfacés, depends both on the conformal class of the
metric and on the spin structur®&. may be unbounded, in contrast to what is known for
the Riemannian case, where the dimension is boundeg #yl]/2] (¢ denoting the genus
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of the surface)—sefd]. Furthermore, for Lorentzian surfaces we have a certain symmetry
between harmonic and twistor spinors.

In the case ofi-surfaces, the conformal invariardtandz reflect the global behaviour of
the null lines. In some regular cases, where the global and local behaviour is quite similar
(e.g. for simply connected surfaces or resonant tér@dndt are+oo. If a “pathological”
behaviour such as dense null lines occurs, theemdzr are less than or equal 2, and we have a
kind of “dynamic” dependence on the conformal class. No intermediate values are attained.
Althoughé andt are weaker conformal invariants than the null lines, in some cases they
allow us to distinguish between conformal classes. Furthermore, solutions with “mass”,
that is solutions without zeros, force conformal flatness. All techniques used—above all the
characterization of harmonic and twistor half-spinors as a kind of parallel spinors along the
lightlike distributions—are genuine for the signatgtel). On the other hand, the case of a
pseudo-Riemannian signatue g) with p+¢ > 3is significantly different. For instance,
the dimension of the space of twistor spinors on a connected pseudo-Riemannian manifold
is bounded by 2r+9)/2+1 (see[2,3]).

It is not clear altogether to what extent these techniques can be applied to a general
Lorentzian surface or which are the geometric obstructions for doing so. The next obvious
step would be to investigate the class of asymptotic cylinders. One could try to find coun-
terexamples of the “heritage principle”, that is, harmonic or twistor spinors which are zero
on the closed null lines, but have no zeros on the asymptotic cylinder itself, or metrics for
which é. or 7. may attain values other thanDor +oo.
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