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Abstract

We are studying the harmonic and twistor equation on Lorentzian surfaces, that is a two-dimen-
sional orientable manifold with a metric of signature(1,1). We will investigate the properties of
the solutions of these equations and try to relate the conformal invariant dimension of the space of
harmonic and twistor spinors to the natural conformal invariants given by the Lorentzian metric. We
will introduce the notion of semi-conformally flat surfaces and establish a complete classification
of the possible dimensions for this family.
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1. Introduction

On every spin manifold we can canonically construct two first-order differential op-
erators, the so-called Dirac and twistor operator. It is known that the dimension of their
resp. kernels—the space of harmonic resp. twistor spinors—is a conformal invariant, that is
invariant under multiplication of the metric used to define these operators with a smooth and
strictly positive function. A natural question that arises is to know how these dimensions can
be expressed in terms of conformal invariants given by the (pseudo-)Riemannian metric.
This question is particularly interesting in the case of Riemannian and Lorentzian surfaces
since they carry a natural conformal structure induced by the isothermal charts.

On Riemannian surfaces, harmonic spinors were studied in[6,4]. The dimension of
the space of harmonic spinors depends essentially—unlike the dimension of the space of
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harmonic forms—on the conformal class of the metric and the spin structure used to define
the Dirac operator. Furthermore, the dimension is bounded. The purpose of this paper is
to study the dimension of the space of harmonic resp. twistor spinors in the case of an
indefinite, that is a Lorentzian metric, and to relate them to lightlike vector fields and
lightlike geodesics. We will show that:

• harmonic and twistor spinors can be described in the same way;
• harmonic and twistor spinors are linked to the global behaviour of the lightlike geodesics

and the given spin structure;
• nowhere vanishing harmonic resp. twistor spinors cause conformal flatness.

Though the Lorentzian theory of surfaces looks similar to its Riemannian analogue, vari-
ous new phenomena occur. For instance, we have uncountably many conformal classes of
simply connected Lorentzian surfaces (see[10]). On the other hand, the torus is the only
compact surface allowed to carry a Lorentzian metric since the Euler number has to vanish.
However, a Lorentzian torus—unlike its Riemannian counterpart—need not be conformally
flat as we have no regularity properties for solutions of hyperbolic partial differential equa-
tions. Further difficulties are caused by the non-compactness of the isometry group and the
indefiniteness of the scalar product on the spinor bundle. In order to by-pass these problems,
different approaches are carried out: For Lorentzian tori provided with a left-invariant met-
ric, we can explicitly compute the kernels by tools developed in[1]. Non-conformally flat
examples of Lorentzian tori are given inSection 4.2.2, where we consider a particular class
of metrics for which the resulting partial differential equations with respect to the trivial spin
structure can be explicitly solved. We will generalize these examples by the observation that
harmonic and twistor half-spinors might be interpreted as parallel spinors along one family
of lightlike geodesics. We shall introducesemi-conformally flat(s.c.f.) Lorentzian surfaces
which are a particular class of time-orientable, non-conformally flat Lorentzian surfaces
(seeDefinition 4.35) for which a classification of the possible dimensions in dependence
on the spin structure and the global properties of the lightlike geodesics is achieved. These
surfaces can by characterized by the existence of a divergence-free lightlike vector field (cf.
Proposition 4.38). Furthermore, we will rederive some geometric properties of Lorentzian
tori shown in[9].

We now want to state our main result. The lightcones in the tangent space induce two
one-dimensional lightlike distributions which according toSection 2may be labelled unam-
biguously byX andY provided the surface is orientable (which we always tacitly assume).
Furthermore, a lightlike vector field is a section either of theX- or of theY-distribution.
It makes therefore sense to speak of anX- or Y-flow if the corresponding vector fields
lie in theX- or Y-distribution, ofX- or Y-geodesics orX- or of Y-conformal flatness (de-
pending on the divergence-free lightlike vector field to beX or Y), etc. By the classical
Poincaré–Bendixson theory for ordinary differential equations on a torus we know that
such lightlikeX- andY-integral curves or “lines” are either closed, asymptotic of a closed
curve or dense. These global properties of the lightlike integral curve give raise to the no-
tion of “resonant” and “non-resonant” cylinders and tori. On the other hand the existence
of harmonic spinors imposes some extra conditions on the holonomy of the principal spin
bundle: If there is a closedX- andY-line, then the lift of this line to the spin bundle has to be
closed as well. This is what we mean by “X”- resp. “Y-triviality”. Let δ± = dim ker(D± :
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Γ (S±) → Γ (S∓)) resp.τ± = dim ker(P± : Γ (S±) → Γ (S∓)) denote the dimensions
of the spaces of positive/negative harmonic resp. twistor half-spinors. Then we assert the
following to be true (cf.Theorem 4.48).

Theorem. Let (M1+1, g) be a compactX-conformally flat Lorentzian surface. Thenδ+ =
τ− and the only possible dimensions forδ+ are0, 1and+∞. These cases are characterized
as follows:

(i) δ+ ≤ 1 if and only if either

• there exists a denseX-line in which case we haveδ+ = 0 for the non-trivial spin
structures, or

• M1+1 is non-resonant, or
• there exists noX-trivial resonant cylinder onM1+1.

Furthermore, we haveδ+ = 1 for the trivial spin structure.
(ii) δ+ = +∞ if and only if there exists anX-trivial resonant cylinder onM1+1. In this

case, we haveδ+ = +∞ for every spin structure.

The same conclusion holds forY andδ− instead ofX andδ+, and an analogous assertion
can be stated for twistor spinors.

The question to what extent this result carries over to general Lorentzian surfaces remains
to be settled.

2. Lorentzian surfaces

We will give a brief introduction to the theory of Lorentzian surfaces. For details, see[10].
A Lorentzian surface(M1+1, g) is given by a smooth and orientable two-dimensional

manifold provided with an indefinite metric, that isTM1+1 splits into the direct sum of atime-
likebundleξ and aspacelikebundleη. Furthermore, the lightcone defined byg is built out of
two locally integrablelightlike (or isotropic) distributions. We call these distributionsX and
Y according to the following convention: a vectorv ∈ TM1+1 lies inX if and only if there
exists a further lightlike vectorw such that(v,w) is an oriented basis andv+w is spacelike.
This convention is well-defined, and reversing the orientation interchangesXwithY. There-
fore, we can assign to any lightlike object theX- resp.Y-type and speak ofX- resp.Y-vector
fields, curves, geodesics, etc. We remark that lightlike vector fields need not exist globally.
In fact, their global existence is equivalent to the existence of a global orthonormal basis, so
that the orthonormal frame bundle overM1+1 is isomorphic toM1+1 × SO+(1,1) where
SO+(1,1) denotes the identity component of the isometry group O(1,1). Equivalently,
we may assume the existence of a non-vanishing timelike vector field. Lorentzian surfaces
which admit such vector fields are said to betime-orientable, since they induce an orientation
in a timelike subbundle. Simply connected Lorentzian surfaces are always time-orientable.
For further reference, we introduce the following notation: if we fix an othonormal basis
s = (s1, s2), letXs = s1+ s2 andYs = −s1+ s2 which areX resp.Y. By a suitable change
of the orthonormal basis, everyX- resp.Y-vector field can be written in this form.
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The local integrability of the lightlike distributions guarantees the existence ofisotropic
resp. isothermalcoordinates(x, y), so we may locally writeg = λ2 dx dy resp.g =
λ2(−dx2 + dy2) for a smoothλ �= 0. In particular, Lorentzian surfaces are locally confor-
mally flat. Recall that two metricsg1 andg2 on a manifoldM are said to be conformally
equivalent if and only if there is a smoothλ > 0 such thatg2 = λg1. In the case whereg2 is
flat, we say thatg1 is conformally flat. An atlas consisting of isotropic or isothermal charts
defines—as in the Riemannian case—aconformal structureon the surface. These corre-
spond bijectively to conformal classes of Lorentzian metrics. It should be noted, however,
that the corresponding transition functions have no regularity properties. The two isotropic
distributionsX andY are conformal invariants of the Lorentzian surface(M1+1, g). In fact,
they determine the conformal class [g]. The maximal integral curves of theX- andY-vector
fields which we callX- andY-lines ornull linesfor short, are further conformal invariants.
TheX- andY-lines throughx will be denoted bylx andmx . As we can locally straighten
out the null lines by choosing isotropic null coordinates, only the global properties of the
null lines encode conformal information. In the case of a simply connected surface, it can
be shown that there are no closed null lines, that two different null lines intersect in at most
one point and that every null line is properly embedded inM1+1.

Since the existence of a Lorentzian metric on a compact surface is equivalent toχ(M) = 0
whereχ denotes the Euler characteristic, every compact Lorentzian surface is diffeomorphic
to a torus. According to the Poincaré–Bendixson theory for ordinary differential equations
on the torus, a null line on a compact Lorentzian surface is either dense, a closed curve
homeomorphic toS1 which cannot be contracted to a point, or an asymptotic of a closed
null line of the same type.

In [9], the explicit behaviour of the null lines and further properties are discussed for
metrics of the form

g(x1,x2) = E(x1)dx2
1 + 2F(x1)dx1 dx2 −G(x1)dx2

2.

Up to a finite covering, all Lorentzian tori with non-trivial isometry group are of that type.
If G ≡ 0 resp.|G| > 0, theng is flat resp. conformally flat. We consider the family of
metricsG′ whereG(0) = 0 andG has only isolated zeros inp0 = 0,p1, . . . , pn−1 ∈ (0,1),
pn+k = pk + 1 for all integerk. Then(R1+1, g) is incomplete in the three causal senses
for all g ∈ G′, and so is(T 1+1, g).

In particular, let us consider the two subfamilies

G1 = {g ∈ G′|G|(0,1) > 0}, (2.1)

G2 = {g ∈ G′|G′(pi) �= 0, F (pi)F (0) > 0,0 ≤ i ≤ n− 1}. (2.2)

We have the following proposition (see[9]).

Proposition 2.1. Letg ∈ G1 ∪ G2.

1. Letη0 = sgnF(0). Then

X1 = G∂x1 + (F + η0

√
EG+ F 2)∂x2, X2 = ∂x1 +

(
F − η0

√
EG+ F 2

G

)
∂x2
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are two linearly independent isotropic vector fields for g(the choice ofη0 guaranteeing
the existence of the limit inpi).

2. The inextendible null geodesics ofX2 are complete. Hence there exists incomplete
X1-geodesics since(T 1+1, g) is lightlike incomplete.

As we remarked above, a Lorentzian torus need not be conformally flat. In fact, we have
the following characterization of conformal flatness (see[9]).

Proposition 2.2. Let (M1+1, g) be a Lorentzian surface.

1. If there is a nowhere vanishing time- or spacelike conformal vector field, then(M1+1, g)

is conformally flat. The converse is true if in addition M is compact.
2. Every conformally flat compact Lorentzian surface is complete.

We recall that a vector fieldK is calledconformalif LKg = σg for a smooth function
σ (whereL denotes the Lie derivative).

3. Pseudo-Riemannian spin geometry

We will give a brief survey of the relevant spin geometric features we use in the fourth
section. We focus mainly on the signature(1,1). A general reference is[1].

Let (Rp+q, 〈·, ·〉p,q) be the standard pseudo-Euclidean vector space of signature(p, q)

wherep is the dimension of a maximal timelike subspace. We shall always assume that
thep first vectors of an orthonormal basis are timelike. Forp + q = 2m we can identify
the associated clifford algebraClp,q = Cliff (Rp+q, 〈·, ·〉p,q) with End(∆p,q) = C(2m)
obtaining thereby an actionµ of Clp,q on∆p,q = C2m . This action will be denoted by·,
that isµ(x, v) = x · v. An explicit isomorphism in signature(1,1) is given by extension of
the mapping

e1 �→
(

0 i
−i 0

)
and e2 �→

(
0 i
i 0

)
. (3.1)

Next, we define the groups Spin(p, q) and Spin+(p, q). LetSp,q = {x ∈ Rp+q |〈x, x〉p,q =
1} andHp,q = {x ∈ Rp+q |〈x, x〉p,q = −1}.

Definition 3.1.

Spin(p, q) = {x1 · · · x2l |xi ∈ Hp,q ∪ Sp,q},
Spin+(p, q) = {x1 · · · x2l |xi ∈ Hp,q ∪ Sp,q with an even number of timelike factors}.

In order to deal simultaneously with the pairs SO(p, q)/Spin(p, q) and SO+(p, q)/
Spin+(p, q), we writeG(p, q) andG̃(p, q), whereG̃(p, q) = Spin(p, q) if G(p, q) =
SO(p, q) andG̃(p, q) = Spin+(p, q) if G(p, q) = SO+(p, q). If we use(3.1)to represent
Spin(1,1), we get the following lemma.
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Lemma 3.2.

Spin(1,1) =
ga =

 a 0

0 ±1

a

 |a ∈ R \ {0}
 .

The volume elementω = e1 · e2 of Cl1,1 defines—viewed as an endomorphism of
∆1,1—a splitting of∆1,1 into the direct sum of∆+

1,1 = Eigenspace ofω for−1= 〈z1〉 and

∆−
1,1 = Eigenspace ofω for 1= 〈iz2〉, where(z1, z2) denotes the standard basis ofC2 (the

sign convention follows[1] and is motivated by the higher dimensional case). Reversing
the orientation interchanges∆+

1,1 with ∆−
1,1.

Next, we consider spin structures of(Mp+q, g), that is reductions(Q, f ) of theG(p, q)-
frame bundleP to aG̃(p, q)-bundleQ. We have the following criterion for the existence
of such reductions.

Proposition 3.3. Let (Mp+q, g) be a connected pseudo-Riemannian manifold and TM=
ξp ⊕ ηq a splitting into a time- and spacelike bundle resp. of maximal rank.

(i) (Mp+q, g) is spin if and only ifw2(TM) = w2
1(η), wherewi ∈ Hi(M,Z2) denotes

the ith Stiefel–Whitney-class.
(ii) If (Mp+q, g) is time-oriented, then the mappingSpin(Mp+q, g)→ π1(P, x), (Q, f ) �→

f∗π1(Q, y) for y ∈ f−1(x) is injective. In particular, two spin structures which are
isomorphic as a twofold covering of P are isomorphic as spin structures.

(iii) If Spin(Mp+q, g) �= ∅, thencard(Spin(Mp+q, g)) = card(H 1(Mp+q,Z2)).

For a proof of (i) see[7], for (ii) and (iii) see[1].
In particular, every time-orientable Lorentzian surface admits a spin structure. One is

explicitly given byQ0 = M1+1 × Spin+(1,1) andf0(x, a) = (x, λ(a)). This spin struc-
ture will be referred to as thetrivial one; it is unique up to isomorphism ifM is simply
connected. On the other hand, ifM is time-orientable and compact, then(M1+1, g) carries
four non-isomorphic spin structures sinceH 1(T 1+1,Z2) = Z2 ⊕ Z2.

If g̃ = κ2g is conformally equivalent tog, we can canonically associate a spin structure
(Q̃, f̃ )with every spin structure(Q, f )on(Mp+q, g): if Φκ : Pg → Pg̃ is the isomorphism
defined bys = (s1, . . . , sp+q) �→ (1/κ)s = ((1/κ)s1, . . . , (1/κ)sp+q), then the subgroup
(Φκ ◦ f )#π1(Q, q) in π1(Pg̃, Φκ(f (q))) distinguishes byProposition 3.3a spin structure
(Q̃, f̃ ) which can be shown to be isomorphic with(Q, f ).

Now, we fix a spin structure(Q, f ) over(Mp+q, g). The associated fibre bundle

S = Q×
G̃(p,q)

∆p,q

is a complex vector bundle of rank 2[(p+q)/2] which is called thespinor bundleassociated
with (Q, f ). The set of smooth sections ofS is denoted byΓ (S): its elements are called
spinor fieldsor spinorsfor short. A spinorϕ may be represented by ãG(p, q)-equivariant
functionϕ̃ ∈ C∞(Q,∆p,q)

G̃(p,q), that is,ϕ̃(qg) = g−1ϕ̃(q) for all q ∈ Qandg ∈ G̃(p, q).
One may also think of a spinor as a collection of local sectionss̃ : U → Q coveringM
together with a family of local trivializationsϕs̃ ∈ C∞(U,7p,q) verifying ϕs̃g = g−1ϕs̃ .
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Furthermore, we can consider the sections ofS± = Q ×
G̃(1,1) 7

±
1,1, where the fibrewise

splitting is induced by the volume element of Cliff(TxM
1+1, gx), the Clifford algebra

generated by(TxM1+1, gx). The corresponding sections inΓ (S±) are calledhalf-spinors.
To emphasize the sign, we also speak ofpositiveornegative(half-)spinors. In the subsequent
chapters, we will also use the following representation of half-spinors: ifϕ ∈ Γ (S±) is
a positive resp. a negative spinor, we can writeϕ̃(g) = f̃±(q)u±1 for f̃± ∈ C∞(Q,C).
Using the representation of Spin(1,1) of Lemma 3.2, the transformation law of̃f+ is given
by f̃+(qga) = (1/a)f̃+(q) andf̃−(qga) = af̃−(q). The same holds if one considers the
complex-valued functionsfs̃ given by the local trivializationsϕs̃ = fs̃u±.

As for Riemannian spin bundles the covariant derivative∇S : Γ (S)→ Γ (T ∗M ⊗ S) is
induced by the lift toQ of the Levi–Civita connectionZ in P . Fixing a local orthonormal
basiss = (s1, s2), we get

∇S
V ϕ = [s̃, V (ϕs̃)− 1

2g(∇LC
V s1, s2)e1 · e2 · ϕs̃ ]. (3.2)

We also verify the product rule

∇S
V (W · ϕ) = (∇LC

V W) · ϕ +W · ∇S
V ϕ.

The main difficulty in the pseudo-Riemannian setup is to define a suitable scalar prod-
uct on S. This can be done as follows: assume(M1+1, g) to be time-orientable. Let
TM1+1 = ξ1 ⊕ η1 be a splitting into a (now trivial) time- resp. spacelike vector bun-
dle. Fix orientations inξ andη. P can be reduced to the structure groupK = SO(1) ×
SO(1), which is maximal compact in SO+(1,1). The reduced bundle is given byPξ =
{(s1, s2)|s1 positively oriented inξ, s2 positively oriented inη}. ThenQ̃ξ = f−1(Pξ ) is the
reduction ofQ toK̃ = (Spin+(1)×Spin+(1))/Z2 which is maximal compact in Spin+(1,1).
We haveS = Q̃ξ ×K̃

∆1,1 andTM = Pξ ×K R1+1. Let (·, ·)∆1,1 denote the standard her-
mitian product on∆1,1 which isK̃-invariant, but not Spin+(1,1)-invariant. We can extend
this scalar product to a fibrewise defined scalar product(·, ·)ξ on S. Now letJξ : S → S,
Jξ ([q̃, v]) = [q̃, e1 · v] for q̃ ∈ Q̃ξ and the unit vector fielde1 ∈ ξ . We define

〈ϕ,ψ〉x = (Jξϕ, ψ)ξx = (e1 · v,w)∆1,1,

whereϕ(x) = [q̃, v] andψ(x) = [q̃, w]. This is an indefinite, Spin+(1,1)-invariant scalar
product onS. Then the formulae

V (〈ϕ,ψ〉) = 〈∇S
V ϕ,ψ〉 + 〈ϕ,∇S

V ψ〉
and

〈X · ϕ,ψ〉 = 〈ϕ,X · ψ〉
hold.

Given (S,∇S) over (M1+1, g), we can canonically define two first-order differential
operators, namely the Dirac operatorD and the twistor operatorP . In terms of a local
orthonormal basiss = (s1, s2), they are given by

Dϕ = −s1 · ∇S
s1
ϕ + s2 · ∇S

s2
ϕ and

Pϕ = −s1 ⊗ (∇S
s1
ϕ + 1

2s1 ·Dϕ)+ s2 ⊗ (∇S
s2
ϕ + 1

2s2 ·Dϕ).
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In the fourth section, we will deal with the equationsDϕ = 0 andPψ = 0 called the
harmonic resp. thetwistor equation, the latter being equivalent to∇S

V ϕ = −1
2V · Dϕ

for everyV ∈ X(M1+1). The solutions are referred to asharmonicresp.twistor spinors.
The vector spaces of harmonic- resp. twistor spinors will be denoted byH andT. Fur-
thermore, we will considerH± = Γ (S±) ∩ H and analogouslyT± = Γ (S±) ∩ T.
The superscript 0 denotes the space of harmonic and twistor spinors resp. their dimen-
sion with respect to the trivial spin structure. We are mainly interested in the numbers
δ(±) = dim(H(±)) and τ(±) = dim(T(±)), since they have the following well-known
property (see[2,3]).

Proposition 3.4. Let g̃ = λg, and H̃(±) resp.T̃(±) the space of harmonic resp. twistor
(half-)spinors with respect tõg. Then the maps

(i) ϕ̃ ∈ H̃(±) �→ λ1/4ϕ̃ ∈ H(±),
(ii) ψ̃ ∈ T̃(±) �→ λ−1/4ϕ̃ ∈ T(±)

are isomorphisms. In particular, δ(±) andτ(±) are conformal invariants.

4. Spinor field equations and lightlike geodesics in signature (1,1)

4.1. Harmonic and twistor spinors

Proposition 4.1.

(i) Letϕ be inΓ (S+) resp. Γ (S−). Thenϕ is harmonic if and only if

∇S
Xϕ ≡ 0 resp. ∇S

Y ϕ ≡ 0

holds for allX vector fieldsX resp. Y-vector fieldsY .
(ii) Letϕ be inΓ (S+) resp. Γ (S−). Thenϕ is twistor if and only if

∇S
Y ϕ ≡ 0 resp. ∇S

Xϕ ≡ 0

holds for allY-vector fieldsY resp. X-vector fieldsX.

Proof. We prove the assertion only for positive spinors, the remaining cases being showed
in the same way.

Let ϕ ∈ Γ (S+) and letX andY be aX-resp.Y-vector field which we writeX = Xs =
(s1 + s2) andY = Ys = (−s1 + s2).

(i) Using the local expression ofD, we see thatϕ is harmonic if and only ifs1 · ∇S
s1
ϕ =

s2 · ∇S
s2
ϕ which is equivalent to∇S

s1
ϕ = ω · ∇S

s2
ϕ = −∇S

s2
ϕ (with the volume element

ω = s1 · s2). Henceϕ is harmonic if and only if∇S
s1+s2

ϕ = 0.
(ii) ∇S

si
ϕ = −(1/2)si · Dϕ for i = 1,2 is equivalent to∇S

s1
ϕ = −ω · ∇S

s2
ϕ and∇S

s2
=

−ω · ∇S
s1
ϕ, hence to∇S−s1+s2

ϕ = 0. �
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Since∇S
V ϕ(x) = [qx, V ∗(ϕ̃)(qx)] for all qx ∈ π−1

Q (x) andV ∈ X(M) (whereV ∗ denotes
the horizontal lift ofV to Q), propositionProposition 4.1may be restated as follows.

Corollary 4.2.

(i) H+ = {ϕ̃ ∈ C∞(Q,∆+
1,1)

G̃(1,1)|ϕ̃ is constant along the horizontal lifts ofX-curves}.
(ii) H− = {ϕ̃ ∈ C∞(Q,∆−

1,1)
G̃(1,1)|ϕ̃ is constant along the horizontal lifts ofY-curves}.

(iii) T+ = {ϕ̃ ∈ C∞(Q,∆+
1,1)

G̃(1,1)|ϕ̃ is constant along the horizontal lifts ofY-curves}.
(iv) T− = {ϕ̃ ∈ C∞(Q,∆−

1,1)
G̃(1,1)|ϕ̃ is constant along the horizontal lifts ofX-curves}.

A further characterization is given by the formula∇S
γ ′(t)ϕ = d/dsPQ

γ :t+s→t ϕ(α(t +
s))|s=0 for any smooth curveγ , wherePQ

γ :t+s→t denotes the parallel transport ofQ along

γ between the fibresπ−1
Q (γ (t + s)) andπ−1

Q (γ (t)).

Corollary 4.3. Let ϕ ∈ Γ (S+). Thenϕ is a positive harmonic spinor if and only if for
anyX-curveα joining two pointsx and y in M1+1, we haveϕ(y) = [PQ

α:x→yq, v] for
ϕ(x) = [q, v]. Analogous statements hold forH−, T+ andT−.

As a first application, we note the following proposition.

Proposition 4.4. There is a bijective correspondence between the sets{ϕ ∈ H+|ϕ(x) �=
0 for all x}and{ϕ ∈ T−|ψ(x) �= 0 for all x}.

Proof. If ϕ ∈ Γ (S+) is given byf̃+u1 for f̃+ ∈ C∞(Q,C), we can define a twistor spinor
ψ
f̃+ ∈ Γ (S−) by ψ̃

f̃+ = 1/f̃+u−1, sinceψ
f̃+(qga) = 1/f̃+(qga) = a(1/f̃+(q)) =

aψ
f̃+(q) = g−1

a ψ
f̃+(q), so 1/f̃+u−1 defines indeed ãG(1,1)-invariant function. Because

of X∗(1/f̃+) = 0,ψ = [q,1/f̃+(q)u−1] defines a negative twistor spinor. �

Proposition 4.5. Let ϕ ∈ H+. If ϕ(x) = 0, thenϕ|lx ≡ 0. In particular, we haveδ+ ≤ 1
for any spin structure if there exists a dense null line on(M1+1, g). Analogous statements
hold forH−, T+ andT−.

Proof. The first assertion is a consequence of the above corollaries. Assume that there is
anx ∈ M1+1 with lx is dense inM1+1. Letϕ1, ϕ2 ∈ H+ with ϕ1 �≡ 0. Pickc ∈ C such that
ϕ2(x) = cϕ1(x). Hence(ϕ2 − cϕ1)|lx ≡ 0, that isϕ2 ≡ cϕ1 for continuity reasons. �

4.2. Examples

We now apply the preceding results to compute some explicit examples. For the sake of
simplicity, we will only deal with positive harmonic spinors, but all examples extend to the
remaining cases in an obvious way.
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4.2.1. Simply connected surfaces
As observed inSection 2, two different null lines intersect at most once and closed

null lines cannot exist. Furthermore, the frame bundleP is trivial since (M1+1, g) is
time-orientable, and the resulting trivial spin structure is unique up to isomorphism.

Proposition 4.6. If M1+1 is simply connected, thenδ+ = +∞.

Proof. Let β : [0,1] → M1+1 be aY-curve with lift β̃ to Q, and letfn : [0,1] → C be
a family of linearly independent smooth functions whose support is strictly contained in
[0,1]. Define a Spin+(1,1)-equivariant functioñϕn : Q→ ∆+

1,1 by extendingϕ̃n(β̃(t)) =
fn(t)u1 first to Q|β by the transitive action of Spin+(1,1) on the fibres, and secondly to
M1+1 by parallel transport onA =⋃

x∈β lx andϕ̃n ≡ 0 onAc. �

This construction depends crucially on the fact that for simply connected surfaces, the
local and the global behaviour of the null lines are the same. Therefore, we can extend local
solutions to global ones. This observation is the key for the construction of harmonic and
twistor spinors inSection 4.3: we will link the global behaviour of the null lines to the
spinors; by studying the null lines in the large, we will be able to extend local solutions or
to find obstructions for doing so.

4.2.2. Diagonal metrics on Lorentzian tori
We consider Lorentzian tori(T 1+1, gλ) whose metric is given by adiagonal metric

gλ(x1, x2) = −λ2
1(x1, x2)dx

2
1 + λ2

2(x1, x2)dx2
2

for λ1, λ2 �= 0 in C∞(R2)Z
2
.

4.2.2.1. Left-invariant metrics.First we consider the case whereλ1, λ2 are constant. Thus
(T 1+1, gλ)may be seen as a Lie group provided with a left-invariant metric. Sinceπ1(T

1+1)

has no two-torsions, we may treat the harmonic and the twistor equation for all four spin
structures simultaneously by tools developed in[1] which we will briefly sketch.

The problem is to compare two non-isomorphic spin structures(Q1, f1) and(Q2, f2)

and to find conditions forΓ (S1) andΓ (S2) to be isomorphic. Let(Mp+q, g) be a pseudo-
Riemannian spin manifold of signature(p, q). Let R′ = {(q1, q2) ∈ Q1 × Q2|f1(q1) =
f2(q2)}. Z2 acts naturally on each fibre ofQi , hence onR′. The pair(R,µ), whereR =
R′/Z2 andµ : R → P, [q1, q2] �→ f1(q1), is called thedeformationof (Q1, f1) and
(Q2, f2). If (Q1, f1)and(Q2, f2)are isomorphic, thenR is ismorphic toP×Z2.G(p, q)×
Z2 acts onR by [q1, q2], (A,m) = [q1a, q2am], wherea ∈ λ−1(A). This action is well
defined, therefore providingR with the structure of aG(p, q) × Z2-fiber bundle. Next
we define the vector bundleE = R/G(p, q) ×Z2 R over M. Its complexificationEC

is given byEC = R/G(p, q) ×Z2 C. Let s̃i : U → Qi be two local sections and let
[s̃] = [(s̃1, s̃2)] : U → R, where [·] denotes the equivalence classes inR. Let e ∈ EC.
Thene can be represented in the forme = [{s̃}, z] ({·} denoting the equivalence classes in
R/G(p, q)).



84 F. Witt / Journal of Geometry and Physics 46 (2003) 74–97

Proposition 4.7. The mapβ : S1⊗EC→ S2 defined byβ([s̃1, v]x⊗ [{s̃}, z]x) = [s̃2, zv]x
is a vector bundle isomorphism.

Hence, in the case whereEC is trivial, the spinor bundlesS1 andS2 are isomorphic. For
instance, this happens if(Q1, f1) and(Q2, f2) are isomorphic, forEC is then isomorphic to
Mp+q×Z2. Thus equivalent spin structures induce isomorphic spinor bundles. Furthermore,
we yield the following corollary.

Corollary 4.8. On a surfaceM each two spinor bundles are isomorphic.

Proof. For the first Chern class of the complexificationEC of the real line bundleE holds
2c1(E

C) = 0. SinceH 2(M,Z) = 0 or Z depending on whether or notM is compact,EC

must be trivial. �

Next we want to know how the spinor derivative transforms under this isomorphism.
Let∇EC be the connection induced by the lift toR of the Levi–Civita connection ofP .

Then one shows that∇EC is flat, hence forη = [{s̃}, z] ∈ Γ (EC|U)with z : U → C, we have

∇EC

V η = [{s̃}, V (η)]. Therefore, the following diagram commutes for everyV ∈ X(Mp+q):

where∇S1
V ⊗∇EC

V

1(ϕ ⊗ η) = ∇S1
V ϕ ⊗ η + ϕ ⊗∇EC

V η.

If we assumeEC to be trivial, then we can choose a nowhere vanishing sectione :
Mp+q → EC. We define the complex-valued formωe by the equation∇EC

V e = ωe(V )e

andαe : Γ (S1) → Γ (S1 ⊗ EC) by αe(ϕ)(x) = ϕx ⊗ ex . Then the following diagram
commutes:

Let us now consider the special case of a connected Lie groupGprovided with a left-invariant
metric g. Let p : G̃ → G be the universal cover ofG. π1(G) acts as a group of deck
transformations. Sinceg is left-invariant, we can trivializeP by choosingn left-invariant
vector fields onG, that isP = G × SO+(p, q). Therefore,Q0 = G × Spin+(p, q) with
f0 = id × λ defines the trivial spin structure onG. The lifts X̃i of the vector fieldsXi to
G̃ are globally left- andπ1(G)-invariant vector fields oñG, henceP̃ = G̃ × SO+(p, q)
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andQ̃0 = G̃× Spin+(p, q), f̃0 = id× λ. We know that Spin(G, g) ∼= Hom(π1(G),Z2).
Let χ ∈ Hom(π1(G),Z2). π1(G, g) acts onG̃ × Spin+(p, q) throughχ by ω, (g̃, a) =
(ω, g̃, χ(ω)a), whereω ∈ π1(G, e). LetQχ = G̃×[π1(G,e),χ ] Spin+(p, q) andfχ : Qχ →
P, [g̃, a] �→ [p(g̃), λ(a)]. Then(Qχ, fχ ) defines a spin structure and the following pro-
postion holds (cf.[1]).

Proposition 4.9.

(i) Spin(G, g) ∼= {(Qχ, fχ )|χ ∈ Hom(π1(G),Z2)}.
(ii) The spinor bundleSχ = Qχ ×Spin+(p,q) ∆p,q associated with the spin structure

(Qχ, fχ ) is given bySχ = G̃×χ ∆p,q .
(iii) The deformation of(Q0, f0)and(Qχ, fχ ) is given byRχ = (G̃/ker(χ))×SO+(p, q).

Furthermore, ECχ = (G̃/ker(χ))×Z2 C.

Assume that we have a nowhere vanishing sectioneχ ∈ Γ (EC). Such a section is given
by a mapεχ : G̃→ C without zeros such thatε(ω, g̃) = χ(ω)ε(g̃). If for χ ≡ 1, we have
ε1 ≡ 1, we can identifyS1 with the trivial spin structure andΓ (S1) with C∞(G,∆p,q).
Let (g, Id) be a global section ofP ∼= G × SO+(p, q) and let [̃g, 1] : U → Qχ be a
local lift of this section. Thenγ (x) = [{g̃(x)}, 1] ∈ Γ (EC|U) corresponds to this section

andeχ (x) = [{g̃(x)}, εχ (g̃(x))] = εχ (g̃(x))γ (x). Since∇ECγ = 0, we get

∇ECχ
V eχ = (dεχ )(V

∗)γ = ε−1
χ (dεχ )(V

∗)eχ ,

henceωχ(V ) = ε−1
χ V ∗(εχ ), whereV ∗ denotes the lift ofV ∈ X(G) to Qχ .

Identifying Γ (Sχ) with Γ (S1) = C∞(G,∆p,q) yields∇Sχ
V ϕ = ∇S1

V ϕ + ε−1
χ V ∗(εχ )ϕ

for ϕ ∈ C∞(G,∆p,q).
For instance, consider the Lorentzian torus(T 1+1, gλ). The universal cover is given

by p : R2 → T 1+1, p(x1, x2) = (e2π ix1, e2π ix2). Thenπ1(T ) = Z ⊕ Z acts onR2

by (z1, z2), (x1, x2) = (x1 + z1, x2 + z2). On the other hand, Hom(π1(T ),Z2) can be
identified withZ2 ⊕ Z2 = {(a1, a2)|ai ∈ {±1}} by χ1 = χ(1⊕ 0) = e(iπ/2)(1−a1) and
χ2 = χ(0⊕ 1) = e(iπ/2)(1−a2). We define

εa(x1, x2) = e(iπ/2)(x1(1−a1)+x2(1−a2)).

Then ε(1,1) ≡ 1 andεχ ((z1, z2), (x1, x2)) = χ
z1
1 χ

z2
2 εχ (x1, x2) = χ(z1, z2)εχ (x1, x2).

Now ωχ(Xs)(x) = ε−1
χ ((s1 + s2)

∗)(εχ )(x̃), hence

ωχ(Xs)(x) = iπ

2

(
1− a1

λ1
+ 1− a2

λ2

)
.

Consequently, for a spinor̃f u1 ∈ Γ (S+(a1,a2)
) ∼= C∞(T 1+1,Cu1) to be harmonic, we yield

the following equation:

∇S1
X f̃ + ω(X)f̃ = 1

λ1
∂x1f̃ +

1

λ2
∂x2f̃ +

iπ

2

(
1− a1

λ1
+ 1− a2

λ2

)
f̃ = 0.
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Let the development of̃f into a Fourier series be given bỹf (x1, x2) =
∑

k,l∈Z f̃ kl e
2π i(kx1+lx2).

Then we get the equation:∑
k,l∈Z

f̃ kl

(
4k − a1 + 1

λ1
+ 4l − a2 + 1

λ2

)
e2π i(kx1+lx2) = 0.

Thusf̃ ∈ C∞(T 1+1,C) defines a harmonic spinor if and only if

f̃ kl = 0 or 4k − a1 + 1= −λ1

λ2
(4l − a2 + 1).

Since constants are solutions for the trivial spin structure and 4k − a1+ 1 and 4l − a2 + 1
are inZ, we finally find

δ+ for

S(a1,a2) (λ1/λ2) ∈ Q (λ1/λ2) /∈ Q

(+1,+1) +∞ 1
(+1,−1) +∞ 0
(−1,+1) +∞ 0
(−1,−1) +∞ 0

4.2.2.2. Closed metrics.Next, letλi ∈ C∞(R2)Z
2

be two periodic functions satisfying
the additional condition:

∂x2λ1 + ∂x1λ2 = 0,

that is the formλ = λ1 dx1 − λ2 dx2 is closed. Therefore we refer to this type of metrics
asclosed. Fix the orthonormal frames = (1/λ1∂x1,1/λ2∂x2). Then div(Xs) = 0—a fact
we will reconsider later. In terms of Fourier coefficients, the closedness condition may be
restated as

lλ1kl = kλ2kl , (4.1)

whereλikl denotes theklth Fourier coefficient ofλi . In particular, we haveλ10l = λ2k0 = 0
for l andk different from 0. These formulae will prove useful for the subsequent computa-
tions. We fix the trivial spin structure and trivialize with respect to the basiss. Using(3.2),
we may rephrase the equation∇S

Xs
f̃ u1 = 0 as

−λ2∂x1f̃ = λ1∂x2f̃ + 1
2(∂x2λ1 + ∂x1λ2),

so using our additional assumption gives

−λ2∂x1f̃ = λ1∂x2f̃ . (4.2)

We remark that the constant spinoru1 defines a solution that projects onto the torus. Fur-
thermore, if there exists a dense null line, we already know byProposition 4.5that there
cannot exist any further linearly independent solutions.

In order to find non-trivial solutions we define the function

f̃ α(x1, x2)=exp

(
iπα

(∫ x1

0
(λ1(s, x2)+λ1(s,0)

)
ds−

∫ x2

0
(λ2(x1, t)+ λ2(0, t))dt)

)
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for 0 �= α ∈ R. Thenf̃ α defines a solution forProposition 4.5onR2. In order to be inducible
on the torusT , we must impose the double-periodicity off̃ α, that isf̃ α(x1+n, x2+m) =
f̃ α(x1, x2) for n,m ∈ Z. If li =

∫∫
T 1+1 λi dT 1+1 denotes the 0th Fourier coefficient ofλi ,

we get the following criterion.

Lemma 4.10. f̃ α ∈ C∞(R2,C)Z
2

if and only ifαli ∈ Z for i = 1,2.

Proof. We havef̃ α(x1 + n, x2 +m) = f̃ α(x1, x2) if and only if

α

(
n

∫ 1

0
(λ1(s, x2)+ λ1(s,0))ds −m

∫ 1

0
(λ2(x1, t)+ λ2(0, t))dt

)
∈ 2Z.

Now,
∫ 1

0 λ1(s, x2)ds = l1 and
∫ 1

0 λ2(x1, t)ds = l2 (use(4.1)), so f̃ α ∈ C∞(R2,C)Z
2

if
and only ifα(nl1 −ml2) ∈ Z for everyn andm in Z. �

In particular, if l1/l2 = p/q ∈ Q (wherep andq have no common divisor), theñf q/l2

defines a solution. Since the set{f̃ αmu1|m ∈ Z} is linearly independent inH0+, we have
δ0+ = +∞.

Example 4.11. Let c > 0 be a rational number andf : R → R be a smooth function
without zeros with period 1 such that−f (2x) �= c for everyx ∈ R andf (2pi) = −c/2
for p0 = 0, p1, . . . , pn = 1 ∈ [0,1], but f ′(2pi) �= 0. For instance, we could choose
c = 2 andf (x) = (1/10) cos(2π(x + (1/4))) − 1. Then the diagonal metric defined by
λ1(x1, x2) = −f (x1 − x2) andλ2 = −f (x1 − x2) − c is closed. Furthermore,l1/l2 =
1/1 − c ∈ Q, henceδ0+ = +∞. If we expressgλ in the new coordinates(x, y) given
by x = (x1 − x2)/2 andy = (x1 + x2)/2, we getgλ(x, y) = (2cf(2x) + c2)dx2 −
4(f 2(2x)+2f (2x)+2)dx dy+ (2cf(2x)+ c2)dy2. Because of our assumptionsgλ ∈ G2
(seeProposition 2.1), sogλ provides an example of a non-conformally flat diagonal metric
since it is not complete.

Lemma 4.12. There are no denseX-null lines if and only ifl1/l2 ∈ Q.

Proof. As the global properties of the null lines such as denseness are independent of the
parametrization, we can consider the flow of anyX-vector field. For instance, we may
chooseX = λ2∂x1+λ1∂x2, where we assume thatλ1, λ2 > 0. Let the flow ofX be given by
(x1(t), x2(t)). We establish the assertion by computing the rotation number of this flow (see
[5] for details).λ2 > 0 impliesλ1 dx1 − λ2 dx2 = 0. Since the formλ = λ1 dx1 − λ2 dx2
is closed, we yield an exact ordinary differential equation onR2. Hence we have to find
anF : R2 → R such that∂x1F = λ1 and∂x2F = −λ2. The initial conditionx2(0) is
determined byF(0, x2(0)) = c for a constantc.

Integration of∂x1F = λ1 yieldsF(x1, x2) =
∫ x1

0 λ1(s, x2)ds + f (x2), wheref ′(x2) =
−λ2(x1, x2)−

∫ x1
0 (∂2λ1)(s, x2)ds = −λ2(x1, x2)+

∫ x1
0 (∂1λ2)(s, x2)ds = −λ2(0, x2). A

possibleF is given byF(x1, x2) =
∫ x1

0 λ1(s, x2)ds−∫ x2
0 λ2(0, s)ds. We choosec = 0 and



88 F. Witt / Journal of Geometry and Physics 46 (2003) 74–97

use the Fourier series ofλ1 andλ2 to get the following equation:

l1x1 +
∑
l

k �=0

λ1kl

e2π ikx1 − 1

2π ik
e2π ilx2 − l2x2 −

∑
l

k �=0

λ2kl

e2π ilx2 − 1

2π il
= 0.

Evaluating inx1 = n ∈ Z yields

l1n− l2x2(n)−
∑
k

l �=0

λ2kl

e2π ilx2 − 1

2π il
= 0,

hence

x2(n)

n
= l1

l2
− 1

n

1

l2

∑
k

l �=0

λ2kl

e2π ilx2 − 1

2π il
= 0.

Since the Fourier series of smooth functions are absolutely convergent, we haveρ =
limn→+∞(x2(n))/n = l1/l2, whence the assertion. �

We finally get the following proposition.

Proposition 4.13. Let g be conformally equivalent to a closed diagonal metric. Then the
following holds: 1 and+∞ are the only possible values forδ0+. Furthermore, these dimen-
sions are characterized as follows:

(i) δ0+ = 1 iff l1/l2 /∈ Q iff all X-null lines are dense.
(ii) δ0+ = +∞ iff l1/l2 ∈ Q iff all X-null lines are closed or asymptotic of a closedX-null

line.

4.3. µ-Surfaces

By Corollary 4.2, a half-spinor which is harmonic or twistor may be seen as an object
that is constant along the lifts of the corresponding null lines. Unfortunately, we have no a
priori control over the parallel transport inQ, and due to the non-compactness ofG̃(1,1),
the lifts of the null lines may even be unbounded (seeProposition 4.17). Therefore, we
focus on cases where a direct link between the null lines on(M1+1, g) and the harmonic
and twistor spinors can be established, without lifting the null lines toQ.

As we did earlier, we restrict our investigation to the case of positive harmonic spinors.
One can prove analogous results by interchanging suitablyS+/S− andX/Y, as pointed out
above.

Definition 4.14. Let ϕ ∈ Γ (S+) be a positive harmonic spinor. A smooth functionµϕ :
M1+1 → C verifying

(i) µϕ(x) = 0 if and only ifϕ(x) = 0 and
(ii) µϕ is constant alongX-curves
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is said to be a mass functional forϕ. A µ-surface is a Lorentzian surface admitting a mass
functional for everyϕ ∈ Γ (S+).

We shall give examples ofµ-surfaces in the following section (seeExample 4.36and
Corollary 4.37in conjunction withProposition 4.47). The reason for looking for such mass
functionals is the following property.

Lemma 4.15. Let (M1+1, g) be aµ-surface. Letϕ be a positive harmonic spinor and
x ∈ M such thatϕ(x) = 0. If (xn) ⊂ l for a fixedX-line l converges tox, thenϕ|l ≡ 0.

The general idea to produce obstructions to the inequalityδ+ ≥ 2 is to assure that a single
zero of a harmonic spinor is propagated along all null lines, therefore forcing the spinor to
be zero everywhere. We note the following “heritage principle”.

Corollary 4.16. Let (M1+1, g) be aµ-surface. Letϕ be a positive harmonic spinor, and
l∞ a closedX-line. If ϕ|l∞ ≡ 0, thenϕ|l ≡ 0 for every asymptoticl of l∞.

Although all spin structures on aµ-surface can be treated simultaneously as we shall see,
the following proposition illustrates how the non-trivial spin structures differ from the trivial
one in terms of the parallel transport.

Proposition 4.17. Let (M1+1, g) be aµ-surface with a denseX-line l. Then there exists a
local sections̃ : U → Q and a convergent sequence(xn) ⊂ U ∩ l with xn → x ∈ U such
that the following property holds. If (an) ⊂ R is defined byPQ

l:x0→xn
s̃(x0) = s̃(xn)gan , then

for a subsequence(anl ) we haveanl → ±∞ or anl → 0, that is {gan} is unbounded in
G̃(1,1). Recall that according toLemma 3.2,

gan =
(
an 0

0 1/an

)
.

Proof. Assume the opposite. Then consider the horizontal liftl∗ of l to Q. Extendl∗ to a
(continuous) sectioñsl : M1+1 → Q by s̃l (x) = limnl

∗(xn) for xn ∈ l → x. This limit
exists indeed, sincel∗(xn) = PQ

l:x0→xn
l∗(x0) is bounded inQ by assumption. HenceQ

would be isomorphic to the trivial spin structure. �

Corollary 4.18. If there exists a denseX-line on aµ-surface(M1+1, g), thenδ+ = 0 for
every non-trivial spin structure.

Proof. Using the notation of the preceding proposition, we have

ϕ(xn) = [PQ
l:x0→xn

s̃(x0), fs̃(x0)u1]

= [s̃(xn), ganfs̃(x0)u1] = [s̃(xn), fs̃(x0)anu1] → ϕ(x).

Hence, ifan →±∞, thenfs̃(x0) = 0. If an → 0, thenϕ(x) = 0. In both cases, the spinor
ϕ has a zero, implyingϕ ≡ 0 byLemma 4.15. �
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From now on, we will mostly consider compactµ-surfaces, though the techniques and
results can be applied to Lorentzian cylinders as well. Due to the “denseness obstruction”
Proposition 4.5, we can restrict our attention to the case where no dense null lines occur.
First, we introduce the subsequent notation.

Let x ∈ M1+1 andl1 andl2 be two closedX-lines which do not containx. SinceM1+1 is
homeomorphic to a torus, the connected components ofM1+1\(l1 ∪ l2) are open inM1+1

and homeomorphic to a cylinder without boundary. LetCl1l2(x) denote the cylinder which
containsx. Its closure is given byCl1l2(x) = Cl1l2(x) ∪ l1 ∪ l2. In the case wherel1 = l2
as a set, we haveCl1l2(x) = M1+1, so the whole torus itself may be considered as a closed
cylinder. Now let bex such thatlx is an asymptotic of the two closed null linesl1 andl2.
Then the cylinderCl1l2(x) will be written Al1l2(x). For further reference, such a cylinder
will be calledasymptotic. Closed null lines are not allowed to be homotopic to a single
point, hence there are no more closed null lines in any asymptotic cylinder. Since every
asymptotic tends tol1 or l2, we get the following lemma.

Lemma 4.19. Letϕ be a positive harmonic spinor on a compactµ-surface. Then its mass
functionalµϕ is constant on every closed asymptotic cylinder.

Thus, if the spinor has a zero in an asymptotic cylinder, it must be zero on the whole
cylinder. In order to treat the case where the union of closed null lines is dense inM1+1, we
introduce a further type of cylinders which does not contain “ribbons” of closed null lines.

Definition 4.20. A cylinderCl1l2 is called non-resonant if for any two arbitrary closed null
lines l̃1, l̃2 in the closure ofCl1l2 there is an asymptoticl in C

l̃1l̃2
.

Lemma 4.21. Let ϕ be a positive harmonic spinor, and C = Cl1l2 be a non-resonant
cylinder. Thenµϕ is constant onC.

Proof. Consider the setA := {x ∈ C|lx is an asymptotic}. A is open and dense inC. As
the total differential ofµϕ vanishes onA as a consequence ofLemma 4.19, the denseness
of A implies the result. �

Corollary 4.22. Let(M1+1, g) be a non-resonantµ-cylinder and letϕ1, ϕ2 be two positive
harmonic spinors. If there exists ax ∈ M1+1 such thatϕ1(x) = ϕ2(x), thenϕ1 ≡ ϕ2. In
particular, every positive harmonic spinor with a zero is identically zero, andδ+ ≤ 1.

Definition 4.23. Let (M1+1, g) be a Lorentzian surface andl a closedX-line. The spin
bundleQ is calledX-trivial along l, if the relationPQ

l:x→xq = q holds for everyx ∈ l and
q ∈ (Q|l )x .

Lemma 4.24. Letϕ be a positive harmonic spinor that has no zero along a closedX-line
l. ThenQ must beX-trivial along l.
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Proof. By Corollary 4.3, we know thatϕ(x) = [q, v] = [PQ
l:x→xq, v]. Hence, ifPQ

l:x→xq =
qg for a uniquely determinedg ∈ Spin(1,1), we haveg−1v = v. It follows g = id by
Lemma 3.2. �

So far, we have obtained obstructions to the inequalityδ+ ≥ 2. In the case where this
inequality holds, a third type of cylinder becomes interesting.

Definition 4.25. A closed cylinderRl1l2 = Cl1l2 which does not consist of a singleX-line
is said to be resonant iflx is closed for everyx ∈ Rl1l2.

Proposition 4.26. Let (M1+1, g) be a compactµ-surface.

(i) A non-trivial positive harmonic spinor cannot be zero on every resonant cylinder.
(ii) If δ+ ≥ 2, then there exists aX-trivial resonant cylinderR on M1+1, that isQ is
X-trivial along every closedX-line in R.

Proof. (ii) is a consequence of (i). To prove the first assertion, let us assume the opposite.
It suffices to show thatµϕ is locally constant.

Let x ∈ M1+1. If lx is an asymptotic, thenµϕ|Al1l2(x)
is constant byLemma 4.19.

Otherwise,lx is closed. If for every neighbourhoodU of x there existsx′ ∈ U such thatlx
is an asymptotic, thenx is in the closure of a non-resonant cylinderC. If x ∈ int(C), then
µϕ is constant on a neighbourhood ofx by Lemma 4.21. If not, thenx ∈ ∂C ∩ ∂R, where
R is a resonant cylinder. Thusµϕ ≡ 0 on a neighbourhood ofx, sinceµϕ|C ≡ const and
µϕ|R ≡ 0 by assumption. �

On the other hand, whenever there exists anX-trivial resonant cylinder onM1+1, then
we can produce harmonic spinors as inProposition 4.6, since theX-triviality guarantees
that the spinors constructed in this way are well defined. Hence we arrive at the following
proposition, generalizing the left-invariant case.

Theorem 4.27. Let(M1+1, g) be a compactµ-surface. Then the only possible dimensions
are δ+ = 0,1 and+∞. These cases are characterized as follows:

(i) δ+ ≤ 1 if and only if either
• there exists a denseX-line in which case we haveδ+ = 0 for the non-trivial spin

structures or
• M1+1 is non-resonant or
• there exists noX-trivial resonant cylinder onM1+1.

(ii) δ+ = +∞ if and only if there exists a resonantX-trivial cylinder onM1+1. In this
case, we haveδ+ = +∞ for every spin structure.

As we have already seen for the left-invariant case, the dimensionsδ+ = 0 and 1 can
occur and depend on the given spin structure.
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4.4. Spinors and conformal flatness

We will now study the relationship between the existence of harmonic and twistor
spinors and conformal flatness. In particular, we will consider the geometric implications
of X-triviality.

As we saw inProposition 2.2, conformal flatness is related to the existence of nowhere
vanishing time- resp. spacelike conformal vector fields. With every spinorϕ ∈ Γ (S), we
can canonically associate a vector field that is conformal in the case of a twistor spinor.

Definition 4.28. Let (Mp+q, g) be an orientable and time-orientable pseudo-Riemannian
spin manifold, and letψ ∈ Γ (S). We define the associated vector fieldVψ by the equation

g(Vψ,W) = ip+1〈W · ψ,ψ〉

for W ∈ X(Mp+q).

A direct computation yields the following proposition (see, for instance[2]).

Proposition 4.29. Letϕ ∈ Γ (S) be a twistor spinor. ThenVψ is a conformal vector field.
More precisely, we haveLVψ g = (4/n)Re(ip+1〈Dψ,ψ〉)g.

Next, we determine the associated vector field of a spinor in signature(1,1).

Lemma 4.30. Let(M1+1, g) be time-orientable andψ ∈ Γ (S). Lets = (s1, s2) : U → P

be an orthonormal frame with a lift̃s to Q̃ξ (cf. Section 3). Letψs̃ = ψ+
s̃
u1 + ψ−

s̃
u−1 ∈

C∞(U,∆1,1) be the local trivialization ofψ with respect tõs. ThenVψ = |ψ+
s̃
|2Xs −

|ψ−
s̃
|2Ys . In particular, Vψ is a causal vector field which is timelike if the local components

ψ+
s andψ−

s have no zeros, and lightlike in case of a half-spinor without zeros.

Proof. Let w1 andw2 be the local components ofW ∈ X(M) with respect tos, that is
W = w1s1 + w2s2 = [s, w1e1 + w2e2]. A direct computation yields< W · ψ,ψ >=
(|ψ−

s̃
|2 + |ψ+

s̃
|2)w1 + (|ψ+

s̃
|2 − |ψ−

s̃
|2)w2. If Vψ = Vψ1s1 + Vψ2s2, we getVψ1 =

(|ψ+
s̃
|2+ |ψ−

s̃
|2) andVψ2 = (|ψ+

s̃
|2− |ψ−

s̃
|2). Furthermore, sinceλ = g(Xs, Ys) > 0 and

g(Vψ, Vψ) = −2λ|ψ+
s̃
|2|ψ−

s̃
|2, the vector fieldVψ is causal. �

Remark 4.31. LetX be aX-vector field andϕ a positive harmonic spinor. ThenX ·ϕ = 0.
In particular we getVϕ · ϕ = 0.

Corollary 4.32. Let (M1+1, g) andψ± ∈ Γ (S±) be two twistor spinors without zeros.
Then(M1+1, g) is conformally flat. In particular if M is compact, then(M1+1, g) is com-
plete.

Remark 4.33. According toProposition 4.4, the same result holds for harmonic instead of
twistor spinors.
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As we have already seen forX-triviality, harmonic resp. twistor spinors without zeros induce
certain “flatness” properties. Therefore, we will look more closely to Lorentzian surfaces
that admit nowhere vanishing solutions to the harmonic resp. twistor equation.

First, we recall the following statement.

Proposition 4.34. Letϕ ∈ Γ (S) be a harmonic spinor on(Mp+q, g). Thendiv(Vϕ) = 0.

Definition 4.35. A time-orientable Lorentzian surface(M1+1, g) is said to beX- resp.Y-
conformally flat if there exists a global orthonormal frames = (s1, s2)such that div(Xs) = 0
resp. div(Ys) = 0. We call a Lorentzian surface(M1+1, g) s.c.f. if (M1+1, g) is eitherX-
orY-conformally flat.

The notion of semi-conformal flatness will be justified inCorollary 4.42.
As we did for spinors, we will concentrate onX-conformally flat surfaces; analogous

statements hold forY-conformally flat ones.
Since everyX-vector field can be written asXs with respect to a suitably chosen basis, a

time-orientable Lorentzian surface isX-conformally flat if and only if there exists aX-vector
field X such that div(X) = 0. Furthermore, it follows that the notion of semi-conformal
flatness is invariant under conformal change of the metric: If there exists aX-vector field
X on (M1+1, g) with div(X) = 0, then we can find anotherX-vector fieldX̃ ∈ X(M) with
d̃iv(X̃) = 0 (whered̃iv denotes the divergence operator associated with the conformally
changed metric̃g = λg) as can be seen from the formulãdiv(V ) = V ( ln(λ))+ div(V ).

Example 4.36.

(i) As we remarked inSection 4.2.2, closed diagonal metrics admit lightlike divergence-free
vector fields and are therefore s.c.f.

(ii) We are going to exhibit further examples by a direct computation of the divergence:
let us consider a Lorentzian torus with standard coordinates(x1, x2) and volume form
ω. Let V = k∂x1 + l∂x2. Using the formula d(iXω) = div(X)ω, we get div(V ) =
∂1k+∂2l+(1/2)V ( ln |det(g)|). In particular, if det(g) ≡ 1, then div(V ) = ∂1k+∂2l. As
semi-conformal flatness is a conformal invariant, we may always assume—by rescaling
the metric with the factor−1/det(g)—this assumption to be fulfilled. For instance, if we
consider the family of metrics given by(2.1) and (2.2), we get the following corollary.

Corollary 4.37. Every metric inG1 ∪ G2 defines an s.c.f. surface.

Proposition 4.38. Let(M1+1, g) be a time-orientable Lorentzian surface. Then the follow-
ing assertions are equivalent:

(i) (M1+1, g) isX-conformally flat.
(ii) There exists a global sectionM1+1 → P such thatdiv(Xs) = 0.

(iii) There exists aX-vector fieldX such thatdiv(X) = 0.
(iv) ∇LC

Xs
si = 0 for i = 1,2.

(v) There exists a positive harmonic spinor without zeros.
(vi) There exists a negative twistor spinor without zeros.
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Proof. Only the implications (ii)⇒ (iv), (iv) ⇒ (ii), (v) ⇒ (iii) and (ii) ⇒ (v) need
proof. (ii) ⇔ (v): by a direct application of the Koszul formula, we prove the following
lemma. �

Lemma 4.39.

−1
2g(Xs, [Xs, Ys ]) = div(Xs) = g(∇LC

Xs
s1, s2) = −g(∇LC

Xs
s2, s1).

Then(3.2) implies the following corollary.

Corollary 4.40. Locally, we have the identity∇S
Xs

[s̃, ϕs̃ ] = [s̃, Xs(ϕs̃)− (1/2)div(Xs)e1 ·
e2 · ϕs̃ ]. In particular, if (M1+1, g) isX-conformally flat, we get∇S

Xs
[s̃, ϕs̃ ] = [s̃, Xs(ϕs̃)].

Furthermore,g(∇LC
Xs

si, si) = 0 for i, j ∈ {1,2}. By the lemma, we haveg(∇LC
Xs

s1, s2) =
−g(∇LC

Xs
s2, s1) = div(Xs), whence the equivalence.

(v) ⇒ (iii): since div(ef X) = ef (X(f ) + div(X)), theX-vector fieldef X will be
divergence-free if and only ifX(f ) = −div(X) holds. ByLemma 4.30, we haveVϕ = λXs

with λ �= 0. Application ofProposition 4.34yieldsXs( ln |λ|) = −div(Xs).
(ii) ⇒ (v): let s̃ : M1+1 → Q0 be a global section in the trivial bundle. Thenϕs̃ = u1

defines a positive harmonic spinor without zeros.

Corollary 4.41. On aX-conformally flat surface, we haveδ0+ ≥ 1.

Corollary 4.42. (M1+1, g) is conformally flat if and only if(M1+1, g) is X- and Y-
conformally flat.

Proof. For a flat metric, every constant defines a harmonic resp. twistor spinor with respect
to the trivial spin structure. The implication follows then fromProposition 3.4. We yield
the converse fromCorollary 4.32. �

Next, we will prove some further properties ofX-conformally flat surfaces.

Definition 4.43. A Lorentzian surface(M1+1, g) is said to beX- resp.Y-complete, if every
X- resp.Y-geodesic is complete. A Lorentzian surface that isX- resp.Y-complete is said
to be semi-null complete.

Proposition 4.44. A compactX-conformally flat surface isX-complete.

Proof. By Proposition 4.38(v), we have∇LC
Xs

Xs = 0, so that theXs-geodesics are given
by the flow ofXs . �

Example 4.45.

(i) The interdependence of semi-conformal flatness, positive harmonic spinors without
zeros and semi-completeness is demonstrated byExample 4.11: since the harmonic
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half-spinors we found have no zeros, the surface must be semi-complete. But we showed
that this metric is inG2, so it is not conformally flat. Hence, fromCorollary 4.42follows
that(T 1+1, g) is complete for one type of isotropic geodesics, and that there must be
incomplete geodesics for the other type, in accordance withProposition 2.1.

(ii) Consider the following example taken from[8]: letτ : [0,1] → R be a smooth function
with τ(a) = 0, butτ ′(a) �= 0, and whose support is strictly contained in [0,1]. Extend
τ periodically on the whole real line and definegτ

(x,y) = 2 dx dy−τ(x)dy2. Thengτ ∈
G′, hencegτ is lightlike incomplete. For instance,γ (t) = (a, τ ′(a) ln(t+(1/τ ′(a)))) is
a closed incomplete geodesic which without loss of generality we assume to beX. Thus
any positive harmonic spinor must be zero onγ . But asτ|[−ε,ε] ≡ 0 for ε sufficiently
small,(T 1+1, g) contains anX-trivial resonant cylinder, and thereforeδ+ = +∞. This
example shows that there exists not conformally flat tori withX-trivial resonant cylinder
which are notX-conformally flat.

Proposition 4.46. On aX-conformally flat surface, we haveH+ ∼= T−.

Proof. The mapsΦ : H+ → T−, ϕ �→ (i/2)Ys · ϕ andΨ : T− → H+, ψ �→ (i/2)Xs · ϕ
are bundle isomorphisms inverse of one another. �

Proposition 4.47. Every s.c.f. surface is aµ-surface.

Proof. Let s = (s1, s2) : M → P be a (global) orthonormal frame with div(Xs) = 0. We
define

µϕ(x) = 〈Ys · ϕ, ϕ〉.
Let s̃ be a local lift ofs toQ̃s1. For this section, letϕ = [s̃, ϕs̃ ]. Thenµϕ(x) = 〈Ys ·ϕ, ϕ〉(x) =
−2|ϕs̃(x)|2, where|·|denotes the absolute value function onC. Thus (i) and (ii) ofDefinition
4.14hold.

Sinceϕ is a positive harmonic spinor, we have∇S
Xs

ϕ = 0. Consequently, we getXs(µϕ) =
〈∇LC

Xs
Ys ·ϕ, ϕ〉. Since∇LC

Xs
Ys = −∇LC

Xs
s1+∇LC

Xs
s2 = 0 byProposition 4.38(iv), the assertion

follows. �

The classification of the possible dimensions ofδ+ in Theorem 4.27may be restated as
follows.

Theorem 4.48. Let (M1+1, g) be a compactX-conformally flat Lorentzian surface. Then
δ+ = τ− and the only possible dimensions forδ+ are 0,1 and+∞. These cases are
characterized as follows:

(i) δ+ ≤ 1 if and only if either
• there exists a denseX-line in which case we haveδ+ = 0 for the non-trivial spin

structures, or
• M1+1 is non-resonant, or
• there exists noX-trivial resonant cylinder onM1+1.
Furthermore, δ0+ = 1.
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(ii) δ+ = +∞ if and only if there exists anX-trivial resonant cylinder onM1+1. In this
case, we haveδ+ = +∞ for every spin structure.

Next we will show that in some senseX-conformal flatness is forced by positive harmonic
spinors which have non-zero “mass”.

Definition 4.49. Let (M1+1, g) be a Lorentzian surface and(P, π,M1+1;G) a principal
fiber bundle overM1+1. A (local) sections : U → P is said to beX- resp.Y-parallel if
for everyX- resp.Y-curveα : [a, b] → U , we havePP

α:a→bs(α(a)) = s(α(b)), wherePP
α

denotes the parallel transport inP alongα.

Lemma 4.50. Let s = (s1, s2) : U → P be a local section of the orthonormal frame
bundleP . Thens is X-parallel if and only ifdiv(Xs) = 0. Furthermore, if s can be lifted
to a sectioñs : U → Q of Q, thens̃ isX-parallel if and only ifdiv(Xs) = 0.

Proof. Let α be the flow generated byXs in U , and letPLC
α be the usual parallel trans-

port in TM1+1 alongα induced byPP . We have∇LC
Xs

sj (x) = d/dtPLC
α:t→0sj (α(t))|t=0 =

d/dt [s(α(0)), ej ] = 0, hence div(Xs) = 0 byProposition 4.38(v). �
For the converse, letZ denote the Levi–Civita connection inP . Since div(Xs) = −(1/2)−
g(∇LC

Xs
s1, s2) = 0, we gets∗Z(X) = Z(ds(X)) = 0 for everyX-vector fieldX (cf.

Corollary 4.40). Hences∗Z(α′(t)) = 0 for everyX-curveα : [a, b] → M1+1, that is
α∗s(α(a)) = lift of α starting ins(α(a)) = s ◦ α. It follows thatPP

α s = α∗s(α(a)) = s(α(b)).

Sincef ◦ PQ = PP ◦ f ands̃∗Z̃(Xs) = −div(Xs)ω = 0 for the lifts ofs andZ to Q,
we deduce the same result for the spin bundleQ.

The notion ofX-triviality can then be reformulated as follows.

Corollary 4.51. Let l be a closedX-line. ThenQ is X-trivial along l if and only if l can
be parametrized such thatdiv(l′) = 0. In particular, such a parametrization makesl into a
geodesic.

Proof. Choose an orthonormal frames such thatl′ = s1 + s2 and repeat the reasoning of
Lemma 4.50. �

Remark 4.52. As in the case of conformal flatness the condition div(X) = 0 can always
be locally realized. Indeed, ifβ : (a, b) → U is aY-curve, pick a sections : |β| → P

and extend this section onU by parallel transport ofs(β(t)) in theX-direction. Hence
s : U → P is X-parallel by construction and well defined ifU is conveniently chosen,
that isβ intersects everyX-line inU only once and there are no closedX-lines (e.g. ifU is
simply connected). Then div(Xs) = 0 byLemma 4.50.

4.5. Conclusion

Like for compact Riemannian surfaces,δ+ depends both on the conformal class of the
metric and on the spin structure.δ+ may be unbounded, in contrast to what is known for
the Riemannian case, where the dimension is bounded by [g + 1/2] (g denoting the genus
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of the surface)—see[6]. Furthermore, for Lorentzian surfaces we have a certain symmetry
between harmonic and twistor spinors.

In the case ofµ-surfaces, the conformal invariantsδ andτ reflect the global behaviour of
the null lines. In some regular cases, where the global and local behaviour is quite similar
(e.g. for simply connected surfaces or resonant tori),δ andτ are+∞. If a “pathological”
behaviour such as dense null lines occurs, thenδ andτ are less than or equal 2, and we have a
kind of “dynamic” dependence on the conformal class. No intermediate values are attained.
Althoughδ andτ are weaker conformal invariants than the null lines, in some cases they
allow us to distinguish between conformal classes. Furthermore, solutions with “mass”,
that is solutions without zeros, force conformal flatness. All techniques used—above all the
characterization of harmonic and twistor half-spinors as a kind of parallel spinors along the
lightlike distributions—are genuine for the signature(1,1). On the other hand, the case of a
pseudo-Riemannian signature(p, q) with p+q ≥ 3 is significantly different. For instance,
the dimension of the space of twistor spinors on a connected pseudo-Riemannian manifold
is bounded by 2[(p+q)/2]+1 (see[2,3]).

It is not clear altogether to what extent these techniques can be applied to a general
Lorentzian surface or which are the geometric obstructions for doing so. The next obvious
step would be to investigate the class of asymptotic cylinders. One could try to find coun-
terexamples of the “heritage principle”, that is, harmonic or twistor spinors which are zero
on the closed null lines, but have no zeros on the asymptotic cylinder itself, or metrics for
which δ± or τ± may attain values other than 0,1 or+∞.
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